Publicação: A machine learning approach of finding the optimal anisotropic SPH kernel
dc.contributor.author | Marinho, Eraldo Pereira [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-04-29T08:37:47Z | |
dc.date.available | 2022-04-29T08:37:47Z | |
dc.date.issued | 2021-12-02 | |
dc.description.abstract | It is presented a machine learning approach to find the optimal anisotropic SPH kernel, whose compact support consists of an ellipsoid that matches with the convex hull of the self-regulating k-nearest neighbors of the smoothing particle (query). | en |
dc.description.affiliation | Sao Paulo State University (UNESP) Department of Statistics Applied Mathematics and Computing, Avenida 24A 1515, Rio Claro | |
dc.description.affiliationUnesp | Sao Paulo State University (UNESP) Department of Statistics Applied Mathematics and Computing, Avenida 24A 1515, Rio Claro | |
dc.identifier | http://dx.doi.org/10.1088/1742-6596/2090/1/012115 | |
dc.identifier.citation | Journal of Physics: Conference Series, v. 2090, n. 1, 2021. | |
dc.identifier.doi | 10.1088/1742-6596/2090/1/012115 | |
dc.identifier.issn | 1742-6596 | |
dc.identifier.issn | 1742-6588 | |
dc.identifier.scopus | 2-s2.0-85121564968 | |
dc.identifier.uri | http://hdl.handle.net/11449/230098 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Physics: Conference Series | |
dc.source | Scopus | |
dc.title | A machine learning approach of finding the optimal anisotropic SPH kernel | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Estatística, Matemática Aplicada e Computação - IGCE | pt |