Logotipo do repositório
 

Publicação:
A machine learning approach of finding the optimal anisotropic SPH kernel

dc.contributor.authorMarinho, Eraldo Pereira [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:37:47Z
dc.date.available2022-04-29T08:37:47Z
dc.date.issued2021-12-02
dc.description.abstractIt is presented a machine learning approach to find the optimal anisotropic SPH kernel, whose compact support consists of an ellipsoid that matches with the convex hull of the self-regulating k-nearest neighbors of the smoothing particle (query).en
dc.description.affiliationSao Paulo State University (UNESP) Department of Statistics Applied Mathematics and Computing, Avenida 24A 1515, Rio Claro
dc.description.affiliationUnespSao Paulo State University (UNESP) Department of Statistics Applied Mathematics and Computing, Avenida 24A 1515, Rio Claro
dc.identifierhttp://dx.doi.org/10.1088/1742-6596/2090/1/012115
dc.identifier.citationJournal of Physics: Conference Series, v. 2090, n. 1, 2021.
dc.identifier.doi10.1088/1742-6596/2090/1/012115
dc.identifier.issn1742-6596
dc.identifier.issn1742-6588
dc.identifier.scopus2-s2.0-85121564968
dc.identifier.urihttp://hdl.handle.net/11449/230098
dc.language.isoeng
dc.relation.ispartofJournal of Physics: Conference Series
dc.sourceScopus
dc.titleA machine learning approach of finding the optimal anisotropic SPH kernelen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos