Logo do repositório

Combining clustering and active learning for the detection and learning of new image classes

dc.contributor.authorColetta, Luiz F. S. [UNESP]
dc.contributor.authorPonti, Moacir
dc.contributor.authorHruschka, Eduardo R.
dc.contributor.authorAcharya, Ayan
dc.contributor.authorGhosh, Joydeep
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniv Texas Austin
dc.date.accessioned2019-10-04T12:38:21Z
dc.date.available2019-10-04T12:38:21Z
dc.date.issued2019-09-17
dc.description.abstractDiscriminative classification models often assume all classes are available at the training phase. As such models do not have a strategy to learn new concepts from available unlabeled instances, they usually work poorly when unknown classes emerge from future data to be classified. To address the appearance of new classes, some authors have developed approaches to transfer knowledge from known to unknown classes. Our study provides a more flexible approach to learn new (visual) classes that emerge over time. The key idea is materialized by an iterative classifier that combines Support Vector Machines with clustering via an optimization algorithm. An entropy and density-based selection strategy explores label uncertainty and high-density regions from unlabeled data to be classified. Selected instances from new classes are submitted to get labels and then used to improve the model. The proposed image classifier is consistently better than approaches that select instances randomly or from clusters. We also show that features obtained via Deep Learning methods improve results when compared with shallow features, but only using our selection strategy. Our approach requires fewer iterations to learn new classes, thereby significantly saving labeling costs. (C) 2019 Elsevier B.V. All rights reserved.en
dc.description.affiliationSao Paulo State Univ, Sch Sci & Engn, Tupa, SP, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Math & Comp Sci, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Sao Paulo, Dept Comp Engn & Digital Syst, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Texas Austin, Dept Elect & Comp Engn, IDEAL, Austin, TX 78712 USA
dc.description.affiliationUniv Texas Austin, Dept Elect & Comp Engn, Machine Learning Res Grp, Austin, TX 78712 USA
dc.description.affiliationUniv Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
dc.description.affiliationUnespSao Paulo State Univ, Sch Sci & Engn, Tupa, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/00357-7
dc.format.extent150-165
dc.identifierhttp://dx.doi.org/10.1016/j.neucom.2019.04.070
dc.identifier.citationNeurocomputing. Amsterdam: Elsevier, v. 358, p. 150-165, 2019.
dc.identifier.doi10.1016/j.neucom.2019.04.070
dc.identifier.issn0925-2312
dc.identifier.urihttp://hdl.handle.net/11449/185768
dc.identifier.wosWOS:000470106400013
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofNeurocomputing
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectImage classification
dc.subjectActive learning
dc.subjectClustering
dc.subjectOpen set
dc.subjectDeep learning
dc.titleCombining clustering and active learning for the detection and learning of new image classesen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0002-4542-8591[1]
unesp.departmentAdministração - Tupãpt

Arquivos