Logotipo do repositório
 

Publicação:
A new look at the Equivalent Linearization Technique to predict LCO in aeroelastic systems with discrete nonlinearities

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Control surfaces nonlinearities can lead to limit cycle oscillations (LCO). Several methods have been proposed to predict LCO, such as Harmonic Balance-based methods (HB). Describing function (DF) is the HB with a single harmonic motion assumed, and the approach can be combined with a classic eigenvalue stability analysis via the Equivalent Linearization Technique (ELT) to predict LCO. On the other hand, High-Order Harmonic Balance (HOHB) methods consider higher number of harmonics, but they lead to a more complex nonlinear algebraic system of equations. This paper introduces a new look at the ELT combining both eigenvalue analysis and describing functions. Two applications are considered. The first one is a new DF written in a matrix form for the ELT to consider both first and third harmonics in LCOs due to freeplay. The second application is an iterative procedure to combine the eigenvalue analysis with a describing function to predict LCOs in systems with both freeplay and friction nonlinearities. Numerical simulations are performed for the aeroelastic typical section airfoil. The results show that the new DF improves the classic DF by providing a more accurate prediction of LCOs that accounts for third harmonic. Also, the iterative-ELT is shown as an excellent predictor of LCO for systems with both freeplay and friction.

Descrição

Palavras-chave

Describing function, Discrete nonlinearities, Equivalent Linearization Technique, Freeplay and friction, Harmonic Balance, Multiple harmonics

Idioma

Inglês

Como citar

Journal of Fluids and Structures, v. 119.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação