Logo do repositório

GIS-FA: an approach to integrating thematic maps, factor-analytic, and envirotyping for cultivar targeting

dc.contributor.authorAraújo, Maurício S.
dc.contributor.authorChaves, Saulo F. S.
dc.contributor.authorDias, Luiz A. S.
dc.contributor.authorFerreira, Filipe M. [UNESP]
dc.contributor.authorPereira, Guilherme R.
dc.contributor.authorBezerra, André R. G.
dc.contributor.authorAlves, Rodrigo S.
dc.contributor.authorHeinemann, Alexandre B.
dc.contributor.authorBreseghello, Flávio
dc.contributor.authorCarneiro, Pedro C. S.
dc.contributor.authorKrause, Matheus D.
dc.contributor.authorCosta-Neto, Germano
dc.contributor.authorDias, Kaio O. G.
dc.contributor.institutionFederal University of Viçosa
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionLimagrain Brazil S.A.
dc.contributor.institutionCornell University
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionIowa State University
dc.date.accessioned2025-04-29T20:10:17Z
dc.date.issued2024-04-01
dc.description.abstractKey message: We propose an “enviromics” prediction model for recommending cultivars based on thematic maps aimed at decision-makers. Abstract: Parsimonious methods that capture genotype-by-environment interaction (GEI) in multi-environment trials (MET) are important in breeding programs. Understanding the causes and factors of GEI allows the utilization of genotype adaptations in the target population of environments through environmental features and factor-analytic (FA) models. Here, we present a novel predictive breeding approach called GIS-FA, which integrates geographic information systems (GIS) techniques, FA models, partial least squares (PLS) regression, and enviromics to predict phenotypic performance in untested environments. The GIS-FA approach enables: (i) the prediction of the phenotypic performance of tested genotypes in untested environments, (ii) the selection of the best-ranking genotypes based on their overall performance and stability using the FA selection tools, and (iii) the creation of thematic maps showing overall or pairwise performance and stability for decision-making. We exemplify the usage of the GIS-FA approach using two datasets of rice [Oryza sativa (L.)] and soybean [Glycine max (L.) Merr.] in MET spread over tropical areas. In summary, our novel predictive method allows the identification of new breeding scenarios by pinpointing groups of environments where genotypes demonstrate superior predicted performance. It also facilitates and optimizes cultivar recommendations by utilizing thematic maps.en
dc.description.affiliationDepartment of Agronomy Federal University of Viçosa, Minas Gerais
dc.description.affiliationDepartment of Crop Science - College of Agricultural Sciences São Paulo State University, São Paulo
dc.description.affiliationLimagrain Brazil S.A., Goiás
dc.description.affiliationDepartment of General Biology Federal University of Viçosa, Minas Gerais
dc.description.affiliationInstitute for Genomics Diversity Cornell University
dc.description.affiliationBrazilian Agricultural Research Corporation (Embrapa Rice and Beans), Goiás
dc.description.affiliationDepartment of Agronomy Iowa State University
dc.description.affiliationUnespDepartment of Crop Science - College of Agricultural Sciences São Paulo State University, São Paulo
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.identifierhttp://dx.doi.org/10.1007/s00122-024-04579-z
dc.identifier.citationTheoretical and Applied Genetics, v. 137, n. 4, 2024.
dc.identifier.doi10.1007/s00122-024-04579-z
dc.identifier.issn1432-2242
dc.identifier.issn0040-5752
dc.identifier.scopus2-s2.0-85187557080
dc.identifier.urihttps://hdl.handle.net/11449/307763
dc.language.isoeng
dc.relation.ispartofTheoretical and Applied Genetics
dc.sourceScopus
dc.titleGIS-FA: an approach to integrating thematic maps, factor-analytic, and envirotyping for cultivar targetingen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-9171-1021[13]

Arquivos

Coleções