Publicação:
Photoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yield

dc.contributor.authorCastro, Fernando A.
dc.contributor.authorBenmansour, Hadjar
dc.contributor.authorMoser, Jacques-E
dc.contributor.authorGraeff, Carlos Frederico de Oliveira [UNESP]
dc.contributor.authorNueesch, Frank
dc.contributor.authorHany, Roland
dc.contributor.institutionLab Funct Polymers
dc.contributor.institutionEcole Polytech Fed Lausanne
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:26:19Z
dc.date.available2014-05-20T13:26:19Z
dc.date.issued2009-01-01
dc.description.abstractPower-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.en
dc.description.affiliationLab Funct Polymers, Swiss Fed Labs Mat Testing & Res, CH-8600 Dubendorf, Switzerland
dc.description.affiliationEcole Polytech Fed Lausanne, Inst Chem Sci & Engn, Photochem Dynam Grp, CH-1015 Lausanne, Switzerland
dc.description.affiliationUNESP, FC, Dept Fis, BR-17033360 Bauru, Brazil
dc.description.affiliationUnespUNESP, FC, Dept Fis, BR-17033360 Bauru, Brazil
dc.format.extent8886-8894
dc.identifierhttp://dx.doi.org/10.1039/b909512h
dc.identifier.citationPhysical Chemistry Chemical Physics. Cambridge: Royal Soc Chemistry, v. 11, n. 39, p. 8886-8894, 2009.
dc.identifier.doi10.1039/b909512h
dc.identifier.issn1463-9076
dc.identifier.orcid0000-0003-0162-8273
dc.identifier.urihttp://hdl.handle.net/11449/8462
dc.identifier.wosWOS:000270319600029
dc.language.isoeng
dc.publisherRoyal Soc Chemistry
dc.relation.ispartofPhysical Chemistry Chemical Physics
dc.relation.ispartofjcr3.906
dc.relation.ispartofsjr1,686
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.titlePhotoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yielden
dc.typeArtigo
dcterms.licensehttp://www.rsc.org/AboutUs/Copyright/Authordeposition.asp
dcterms.rightsHolderRoyal Soc Chemistry
dspace.entity.typePublication
unesp.author.lattes5268607684223281[4]
unesp.author.orcid0000-0003-0162-8273[4]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentFísica - FCpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: