Logo do repositório
 

Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications

dc.contributor.authorBim-Júnior, Odair [UNESP]
dc.contributor.authorCurylofo-Zotti, Fabiana
dc.contributor.authorReis, Mariana
dc.contributor.authorAlania, Yvette
dc.contributor.authorLisboa-Filho, Paulo N. [UNESP]
dc.contributor.authorBedran-Russo, Ana K.
dc.contributor.institutionMarquette University School of Dentistry
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2021-06-25T10:22:27Z
dc.date.available2021-06-25T10:22:27Z
dc.date.issued2021-03-15
dc.description.abstractThe use of polymer additives that stabilize fluidic amorphous calcium phosphate is key to obtaining intrafibrillar mineralization of collagen in vitro. On the other hand, this biomimetic approach inhibits the nucleation of mineral crystals in unconfined extrafibrillar spaces, that is, extrafibrillar mineralization. The extrafibrillar mineral content is a significant feature to replicate from hard connective tissues such as bone and dentin as it contributes to the final microarchitecture and mechanical stiffness of the biomineral composite. Herein, we report a straightforward route to produce densely mineralized collagenous composites via a surface-directed process devoid of the aid of polymer additives. Simulated body fluid (1×) is employed as a biomimetic crystallizing medium, following a preloading procedure on the collagen surface to quickly generate the amorphous precursor species required to initiate matrix mineralization. This approach consistently leads to the formation of extrafibrillar bioactive minerals in bulk collagen scaffolds, which may offer an advantage in the production of osteoconductive collagen-apatite materials for tissue engineering and repair purposes.en
dc.description.affiliationDepartment of General Dental Sciences Marquette University School of Dentistry
dc.description.affiliationDepartment of Physics School of Sciences São Paulo State University (UNESP)
dc.description.affiliationDepartment of Restorative Dentistry School of Dentistry of Ribeirão Preto University of São Paulo (USP)
dc.description.affiliationUnespDepartment of Physics School of Sciences São Paulo State University (UNESP)
dc.format.extent2514-2522
dc.identifierhttp://dx.doi.org/10.1021/acsabm.0c01507
dc.identifier.citationACS Applied Bio Materials, v. 4, n. 3, p. 2514-2522, 2021.
dc.identifier.doi10.1021/acsabm.0c01507
dc.identifier.issn2576-6422
dc.identifier.scopus2-s2.0-85100637838
dc.identifier.urihttp://hdl.handle.net/11449/205857
dc.language.isoeng
dc.relation.ispartofACS Applied Bio Materials
dc.sourceScopus
dc.subjectamorphous precursor
dc.subjectapatite
dc.subjectmineralization
dc.subjectnanofibrous scaffolds
dc.subjecttype-I collagen
dc.titleSurface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applicationsen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0001-9938-9500 0000-0001-9938-9500[1]
unesp.author.orcid0000-0002-0482-6956 0000-0002-0482-6956[2]
unesp.author.orcid0000-0002-0865-4311[3]
unesp.author.orcid0000-0002-7734-4069[5]
unesp.author.orcid0000-0002-3670-9519[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt

Arquivos