Logotipo do repositório
 

Publicação:
On interactive fuzzy solutions for mechanical vibration problems

dc.contributor.authorEduardo Sanchez, Daniel
dc.contributor.authorWasques, Vinicius F. [UNESP]
dc.contributor.authorArenas, Jorge P.
dc.contributor.authorEsmi, Estevao
dc.contributor.authorBarros, Laecio Carvalho de
dc.contributor.institutionUniv Austral Chile
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionNatl Ctr Res Energy & Mat
dc.date.accessioned2021-06-25T15:07:00Z
dc.date.available2021-06-25T15:07:00Z
dc.date.issued2021-08-01
dc.description.abstractFuzzy initial value problems describing classical mechanical vibrations are the focus of this paper. In particular, this work considers systems described by nth-order linear ordinary differential equations whose initial conditions are uncertain and given by interactive fuzzy numbers. The concept of interactivity arises from the concept of joint possibility distribu-tion ( J). An approach based on the sup -J extension principle, which is a generalization of Zadeh & rsquo;s extension principle, is presented. This theory is applied to two major examples of oscillatory systems: the forced vibration of an uncoupled mass-spring-damper system and the free vibration of a coupled undamped mass-spring system. In both cases, we have that the solution via sup -J extension, where the fuzzy initial conditions are given by linearly correlated fuzzy numbers, is contained in the solution via Zadeh & rsquo;s extension. (c) 2021 Elsevier Inc. All rights reserved.en
dc.description.affiliationUniv Austral Chile, Ctr Basic Sci Teaching Engn, Valdivia, Chile
dc.description.affiliationSao Paulo State Univ, Dept Math, Rio Claro, Brazil
dc.description.affiliationUniv Austral Chile, Inst Acoust, Valdivia, Chile
dc.description.affiliationUniv Estadual Campinas, Dept Appl Math, Campinas, Brazil
dc.description.affiliationNatl Ctr Res Energy & Mat, Dept Integrated Sci Teaching Ctr, Campinas, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Math, Rio Claro, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 142414/20174
dc.description.sponsorshipIdCNPq: 306546/20175
dc.description.sponsorshipIdFAPESP: 2016/260407
dc.description.sponsorshipIdCAPES: 001
dc.format.extent304-314
dc.identifierhttp://dx.doi.org/10.1016/j.apm.2021.03.002
dc.identifier.citationApplied Mathematical Modelling. New York: Elsevier Science Inc, v. 96, p. 304-314, 2021.
dc.identifier.doi10.1016/j.apm.2021.03.002
dc.identifier.issn0307-904X
dc.identifier.urihttp://hdl.handle.net/11449/210390
dc.identifier.wosWOS:000656885200006
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofApplied Mathematical Modelling
dc.sourceWeb of Science
dc.subjectFuzzy initial value problems
dc.subjectInteractive fuzzy numbers
dc.subjectSup-J extension principle
dc.subjectMechanical vibration
dc.titleOn interactive fuzzy solutions for mechanical vibration problemsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentMatemática - IGCEpt

Arquivos