Rare events for low energy domain in bouncing ball model
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The probability distribution for multiple collisions observed in the chaotic low energy domain in the bouncing ball model is shown to be scaling invariant concerning the control parameters. The model considers the dynamics of a bouncing ball particle colliding elastically with two rigid walls. One is fixed, and the other one moves periodically in time. The dynamics is described by a two-dimensional mapping for the variables velocity of the particle and phase of the moving wall. For a specific combination of velocity and phase, the particle may experience a type of rare collision named successive collisions. We show that a power law describes the probability distribution of the multiple impacts and is scaling invariant to the control parameter.
Descrição
Palavras-chave
Chaos, Fermi-Ulam model, Rare events, Scaling invariance, Bouncing balls, Control parameters, Energy domain, Fermi-ulam model, Lower energies, Multiple collisions, Probability: distributions, Rare event, Scalings
Idioma
Inglês
Citação
Physics Letters, Section A: General, Atomic and Solid State Physics, v. 531.




