Publicação:
Classifier for motor imagery during parametric functional electrical stimulation frequencies on the quadriceps muscle

Nenhuma Miniatura disponível

Data

2019-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

This work proposes the classification of motor imagery signals for brain-machine interfaces with functional electrical stimulation in the quadriceps muscle. Five volunteers participated in the test, 3 healthy participants, aged 28 +/- 3 years, and 2 paraplegic volunteers, aged 43 (ASIA-B, C7 level - 16 years) and 47 (ASIA-A, T7 level - 20 years) years respectively. In total, each participant performed 90 repetitions of motor imaging of the lower limb under electrical stimulation, with frequencies of 20Hz, 35Hz, and 50Hz and current amplitude of 20mA. The patterns were analyzed off-line and submitted to the classification architectures after application of spatial filtering to extract the characteristics. The classification of the patterns was performed using the architectures: (i) Linear Discriminant Analysis (LDA), (ii) Multilayer Perceptron (MLP), and (iii) Support Vector Machine (SVM). To validate the proposal, the performance was compared between the classifiers through the accuracy of cross validation, variance, precision, and sensitivity. With the SVM classifier, the best accuracy percentage was 86.5%. These results are promising and the trained architectures are feasible for implementation in neuroprostheses with lower computational resources.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

2019 9th International Ieee/embs Conference On Neural Engineering (ner). New York: Ieee, p. 526-529, 2019.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação