Logotipo do repositório
 

Publicação:
Classifier for motor imagery during parametric functional electrical stimulation frequencies on the quadriceps muscle

dc.contributor.authorBroniera Junior, P. [UNESP]
dc.contributor.authorNunes, W. R. B. M.
dc.contributor.authorLazzaretti, A. E.
dc.contributor.authorNohama, P.
dc.contributor.authorCarvalho, A. A. [UNESP]
dc.contributor.authorKrueger, E.
dc.contributor.authorTeixeira, M. C. M. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUTFPR Fed Univ Technol Parana
dc.contributor.institutionFed Univ Technol
dc.contributor.institutionPontifical Catholic Univ Parana PUCPR
dc.contributor.institutionUniversidade Estadual de Londrina (UEL)
dc.date.accessioned2019-10-04T12:38:20Z
dc.date.available2019-10-04T12:38:20Z
dc.date.issued2019-01-01
dc.description.abstractThis work proposes the classification of motor imagery signals for brain-machine interfaces with functional electrical stimulation in the quadriceps muscle. Five volunteers participated in the test, 3 healthy participants, aged 28 +/- 3 years, and 2 paraplegic volunteers, aged 43 (ASIA-B, C7 level - 16 years) and 47 (ASIA-A, T7 level - 20 years) years respectively. In total, each participant performed 90 repetitions of motor imaging of the lower limb under electrical stimulation, with frequencies of 20Hz, 35Hz, and 50Hz and current amplitude of 20mA. The patterns were analyzed off-line and submitted to the classification architectures after application of spatial filtering to extract the characteristics. The classification of the patterns was performed using the architectures: (i) Linear Discriminant Analysis (LDA), (ii) Multilayer Perceptron (MLP), and (iii) Support Vector Machine (SVM). To validate the proposal, the performance was compared between the classifiers through the accuracy of cross validation, variance, precision, and sensitivity. With the SVM classifier, the best accuracy percentage was 86.5%. These results are promising and the trained architectures are feasible for implementation in neuroprostheses with lower computational resources.en
dc.description.affiliationUNESP Sao Paulo State Univ, Master & PhD Program Elect Engn, Campus Ilha Solteira, Sao Paulo, Brazil
dc.description.affiliationUTFPR Fed Univ Technol Parana, COELT Elect Engn, Campus Apucarana, Londrina, Brazil
dc.description.affiliationFed Univ Technol, Grad Program Elect & Comp Engn CPGEI, Curitiba, Parana, Brazil
dc.description.affiliationPontifical Catholic Univ Parana PUCPR, Rehabil Engn Lab PPGTS, Curitiba, Parana, Brazil
dc.description.affiliationUniv Estadual Londrina, Neural Engn & Rehabil Lab, Master & PhD Program Rehabil Sci, Londrina, Brazil
dc.description.affiliationUnespUNESP Sao Paulo State Univ, Master & PhD Program Elect Engn, Campus Ilha Solteira, Sao Paulo, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 151210/2018-7
dc.description.sponsorshipIdCAPES: 001
dc.format.extent526-529
dc.identifier.citation2019 9th International Ieee/embs Conference On Neural Engineering (ner). New York: Ieee, p. 526-529, 2019.
dc.identifier.issn1948-3546
dc.identifier.urihttp://hdl.handle.net/11449/185765
dc.identifier.wosWOS:000469933200129
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2019 9th International Ieee/embs Conference On Neural Engineering (ner)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleClassifier for motor imagery during parametric functional electrical stimulation frequencies on the quadriceps muscleen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.lattes0250066159980825[5]
unesp.author.orcid0000-0001-8204-3482[5]
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos