Logotipo do repositório
 

Publicação:
Teorema de Riemann-Roch, morfismos de Frobenius e a hipótese de Riemann

Carregando...
Imagem de Miniatura

Orientador

Salehyan, Parham

Coorientador

Pós-graduação

Matemática - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (inglês)

The aim of this work is to estimate a bound for the number of rational points of a curve. Observing the various similarities between the ring of integers and the ring of polynomials in one variable, we use tools from number theory to solve a problem of algebraic geometry. From this merger is born one of the noblest areas of mathematics: arithmetic geometry. Making use of the famous Riemann-Roch's theorem and tools of number theory we demonstrate the Riemann hypothesis for the zeta-function of a nonsingular curve and which consequence this hypothesis has to count rational points on a curve

Resumo (português)

O objetivo desde trabalho e estimar um cota para o n umero de pontos racionais de uma curva. Observando as várias semelhanças entre o anel dos inteiros e o anel dos polinômios em uma variável, iremos usar ferramentas da teoria dos números para resolver um problema da geometria algébrica. Desta fusão nasce uma das mais nobres areas da matemática: a geometria aritmética. Fazendo uso do célebre teorema de Riemann-Roch e das ferramentas da teoria dos números demonstraremos a hipótese de Riemann para a funço-zeta de uma curva não singular e qual consequência tal hipótese tem para a contagem de pontos racionais de uma curva

Descrição

Palavras-chave

Matemática, Geometria algebrica, Geometria algebrica aritmetica, Riemann-Roch, Teoremas de, Hipótese de Riemann, Funções Zeta, Geometry, Algebraic

Idioma

Português

Como citar

SILVA JUNIOR, Roberto Carlos Alvarenga da. Teorema de Riemann-Roch, morfismos de Frobenius e a hipótese de Riemann. 2014. 197 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas, 2014.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação