Feasibility of using eucalyptus wood and castor oil adhesive to produce OSB panels
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Wood panels play a key role in the industrialization of construction, combining technological and sustainable characteristics being associated with a possible lower environmental impact related to carbon fixation and the replacement of non-renewable materials. The growing global consumption of OSB (Oriented Strand Board) panels highlights their relevance and consolidation in the market. Therefore, to ensure the safe application of these composites as construction components, viable alternatives to traditional raw materials must be explored to meet regulatory and technological requirements. In this context, OSB panels were produced using eucalyptus wood which is a fast-growing reforestation hardwood, and castor oil polyurethane adhesive, which is derived from renewable sources. This preliminary study evaluated the physical and mechanical properties of the panels produced, including density (D), moisture content (MC), swelling in thickness − 24 h (TS), water absorption (WA), modulus of elasticity (MOE) and modulus of strength in bending (MOR) in both parallel (p.a.) and perpendicular directions (pe), internal bond (IB), and Resistance to axial withdrawal of screws in face and edge (PS-s and PS-t). The average results were compared with the use classes of Standard EN 300:2006, demonstrating that the panels meet OSB/4 classification (heavy-duty load-bearing boards for humid conditions) and also with literature. Notably, the mechanical properties exceeded standard requirements by 57% for MOE-pa, 79% for MOR-pa, 39% for MOE-pe, 80% for MOR-pe, 189% for IB, 38% for PS-s, and 172% for PS-t, confirming their production viability and excellent structural performance.
Descrição
Palavras-chave
Idioma
Inglês
Citação
European Journal of Wood and Wood Products, v. 83, n. 2, 2025.




