Logotipo do repositório
 

Publicação:
Orthogonal polynomials and Mobius transformations

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Artigo

Direito de acesso

Resumo

Given an orthogonal polynomial sequence on the real line, another sequence of polynomials can be found by composing them with a Mobius transformation. In this work, we study the properties of such Mobius-transformed polynomials in a systematically way. We show that these polynomials are orthogonal on a given curve of the complex plane with respect to a particular kind of varying measure, and that they enjoy several properties common to the orthogonal polynomials on the real line. Moreover, many properties of the orthogonal polynomials can be easier derived from this approach, for example, we can show that the Hermite, Laguerre, Jacobi, Bessel and Romanovski polynomials are all related with each other by suitable Mobius transformations; also, the orthogonality relations for Bessel and Romanovski polynomials on the complex plane easily follows.

Descrição

Palavras-chave

Orthogonal polynomials, Mobius transformations, Varying weight functions, Classical orthogonal polynomials, Bessel polynomials, Romanovski polynomials

Idioma

Inglês

Como citar

Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 40, n. 6, 27 p., 2021.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação