Logotipo do repositório
 

Publicação:
Estimates for the volume variation of compact submanifolds driven by a stochastic flow

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Consider a compact submanifold N without the boundary of a Riemannian manifold M, and a stochastic flow (Formula presented.) associated with a stochastic differential equation. Let (Formula presented.) be the random compact submanifold obtained by the action of the stochastic flow. In this work, we present an Itô formula for the volume of the random variable (Formula presented.) and, as a main result, we obtain estimates for its average growth assuming that Ricci curvature is bounded. We first analyse the particular case where the submanifolds are closed curves, thus obtaining estimates for the arc length, and then we study the volume variation of compact submanifolds of dimensions greater than or equal to 2. In addition, we apply our results to the special case where the vector fields of stochastic differential equation are conformal Killing.

Descrição

Palavras-chave

58J65, 60H10, 60J60, compact submanifold, Fréchet manifold, stochastic flow, Volume growth estimate

Idioma

Inglês

Como citar

Dynamical Systems.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação