Logo do repositório

Optimal population-specific HLA imputation with dimension reduction

dc.contributor.authorDouillard, Venceslas
dc.contributor.authordos Santos Brito Silva, Nayane [UNESP]
dc.contributor.authorBourguiba-Hachemi, Sonia
dc.contributor.authorNaslavsky, Michel S.
dc.contributor.authorScliar, Marilia O.
dc.contributor.authorDuarte, Yeda A. O.
dc.contributor.authorZatz, Mayana
dc.contributor.authorPassos-Bueno, Maria Rita
dc.contributor.authorLimou, Sophie
dc.contributor.authorGourraud, Pierre-Antoine
dc.contributor.authorLaunay, Élise
dc.contributor.authorCastelli, Erick C. [UNESP]
dc.contributor.authorVince, Nicolas
dc.contributor.institutionCenter for Research in Transplantation and Translational Immunology
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionHospital Israelita Albert Einstein
dc.contributor.institutionCHU de Nantes
dc.date.accessioned2025-04-29T20:03:07Z
dc.date.issued2024-01-01
dc.description.abstractHuman genomics has quickly evolved, powering genome-wide association studies (GWASs). SNP-based GWASs cannot capture the intense polymorphism of HLA genes, highly associated with disease susceptibility. There are methods to statistically impute HLA genotypes from SNP-genotypes data, but lack of diversity in reference panels hinders their performance. We evaluated the accuracy of the 1000 Genomes data as a reference panel for imputing HLA from admixed individuals of African and European ancestries, focusing on (a) the full dataset, (b) 10 replications from 6 populations, and (c) 19 conditions for the custom reference panels. The full dataset outperformed smaller models, with a good F1-score of 0.66 for HLA-B. However, custom models outperformed the multiethnic or population models of similar size (F1-scores up to 0.53, against up to 0.42). We demonstrated the importance of using genetically specific models for imputing populations, which are currently underrepresented in public datasets, opening the door to HLA imputation for every genetic population.en
dc.description.affiliationNantes Université INSERM Ecole Centrale Nantes Center for Research in Transplantation and Translational Immunology
dc.description.affiliationSão Paulo State University Molecular Genetics and Bioinformatics Laboratory School of Medicine
dc.description.affiliationHuman Genome and Stem Cell Research Center University of São Paulo
dc.description.affiliationDepartment of Genetics and Evolutionary Biology Biosciences Institute University of São Paulo
dc.description.affiliationHospital Israelita Albert Einstein
dc.description.affiliationMedical-Surgical Nursing Department School of Nursing University of São Paulo
dc.description.affiliationEpidemiology Department Public Health School University of São Paulo
dc.description.affiliationDepartment of Pediatrics and Pediatric Emergency Hôpital Femme Enfant Adolescent CHU de Nantes
dc.description.affiliationUnespSão Paulo State University Molecular Genetics and Bioinformatics Laboratory School of Medicine
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipInstitut National de la Santé et de la Recherche Médicale
dc.description.sponsorshipH2020 Marie Skłodowska-Curie Actions
dc.description.sponsorshipConseil Régional des Pays de la Loire
dc.description.sponsorshipUniversité de Nantes
dc.identifierhttp://dx.doi.org/10.1111/tan.15282
dc.identifier.citationHLA, v. 103, n. 1, 2024.
dc.identifier.doi10.1111/tan.15282
dc.identifier.issn2059-2310
dc.identifier.issn2059-2302
dc.identifier.scopus2-s2.0-85176372849
dc.identifier.urihttps://hdl.handle.net/11449/305438
dc.language.isoeng
dc.relation.ispartofHLA
dc.sourceScopus
dc.subjectAdmixed populations
dc.subjectDimension reduction
dc.subjectHLA imputation
dc.subjectImmunogenomics
dc.titleOptimal population-specific HLA imputation with dimension reductionen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-6762-4083[1]
unesp.author.orcid0000-0001-5511-8426[2]
unesp.author.orcid0000-0002-2452-2861[3]
unesp.author.orcid0000-0002-9068-1713[4]
unesp.author.orcid0000-0003-3933-2179[6]
unesp.author.orcid0000-0003-3970-8025[7]
unesp.author.orcid0000-0002-9248-3008[8]
unesp.author.orcid0000-0002-7702-8234[9]
unesp.author.orcid0000-0003-1131-9554[10]
unesp.author.orcid0000-0002-4081-4653[11]
unesp.author.orcid0000-0003-2142-7196[12]
unesp.author.orcid0000-0002-3767-6210[13]

Arquivos

Coleções