Optimal population-specific HLA imputation with dimension reduction
| dc.contributor.author | Douillard, Venceslas | |
| dc.contributor.author | dos Santos Brito Silva, Nayane [UNESP] | |
| dc.contributor.author | Bourguiba-Hachemi, Sonia | |
| dc.contributor.author | Naslavsky, Michel S. | |
| dc.contributor.author | Scliar, Marilia O. | |
| dc.contributor.author | Duarte, Yeda A. O. | |
| dc.contributor.author | Zatz, Mayana | |
| dc.contributor.author | Passos-Bueno, Maria Rita | |
| dc.contributor.author | Limou, Sophie | |
| dc.contributor.author | Gourraud, Pierre-Antoine | |
| dc.contributor.author | Launay, Élise | |
| dc.contributor.author | Castelli, Erick C. [UNESP] | |
| dc.contributor.author | Vince, Nicolas | |
| dc.contributor.institution | Center for Research in Transplantation and Translational Immunology | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Universidade de São Paulo (USP) | |
| dc.contributor.institution | Hospital Israelita Albert Einstein | |
| dc.contributor.institution | CHU de Nantes | |
| dc.date.accessioned | 2025-04-29T20:03:07Z | |
| dc.date.issued | 2024-01-01 | |
| dc.description.abstract | Human genomics has quickly evolved, powering genome-wide association studies (GWASs). SNP-based GWASs cannot capture the intense polymorphism of HLA genes, highly associated with disease susceptibility. There are methods to statistically impute HLA genotypes from SNP-genotypes data, but lack of diversity in reference panels hinders their performance. We evaluated the accuracy of the 1000 Genomes data as a reference panel for imputing HLA from admixed individuals of African and European ancestries, focusing on (a) the full dataset, (b) 10 replications from 6 populations, and (c) 19 conditions for the custom reference panels. The full dataset outperformed smaller models, with a good F1-score of 0.66 for HLA-B. However, custom models outperformed the multiethnic or population models of similar size (F1-scores up to 0.53, against up to 0.42). We demonstrated the importance of using genetically specific models for imputing populations, which are currently underrepresented in public datasets, opening the door to HLA imputation for every genetic population. | en |
| dc.description.affiliation | Nantes Université INSERM Ecole Centrale Nantes Center for Research in Transplantation and Translational Immunology | |
| dc.description.affiliation | São Paulo State University Molecular Genetics and Bioinformatics Laboratory School of Medicine | |
| dc.description.affiliation | Human Genome and Stem Cell Research Center University of São Paulo | |
| dc.description.affiliation | Department of Genetics and Evolutionary Biology Biosciences Institute University of São Paulo | |
| dc.description.affiliation | Hospital Israelita Albert Einstein | |
| dc.description.affiliation | Medical-Surgical Nursing Department School of Nursing University of São Paulo | |
| dc.description.affiliation | Epidemiology Department Public Health School University of São Paulo | |
| dc.description.affiliation | Department of Pediatrics and Pediatric Emergency Hôpital Femme Enfant Adolescent CHU de Nantes | |
| dc.description.affiliationUnesp | São Paulo State University Molecular Genetics and Bioinformatics Laboratory School of Medicine | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Institut National de la Santé et de la Recherche Médicale | |
| dc.description.sponsorship | H2020 Marie Skłodowska-Curie Actions | |
| dc.description.sponsorship | Conseil Régional des Pays de la Loire | |
| dc.description.sponsorship | Université de Nantes | |
| dc.identifier | http://dx.doi.org/10.1111/tan.15282 | |
| dc.identifier.citation | HLA, v. 103, n. 1, 2024. | |
| dc.identifier.doi | 10.1111/tan.15282 | |
| dc.identifier.issn | 2059-2310 | |
| dc.identifier.issn | 2059-2302 | |
| dc.identifier.scopus | 2-s2.0-85176372849 | |
| dc.identifier.uri | https://hdl.handle.net/11449/305438 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | HLA | |
| dc.source | Scopus | |
| dc.subject | Admixed populations | |
| dc.subject | Dimension reduction | |
| dc.subject | HLA imputation | |
| dc.subject | Immunogenomics | |
| dc.title | Optimal population-specific HLA imputation with dimension reduction | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-6762-4083[1] | |
| unesp.author.orcid | 0000-0001-5511-8426[2] | |
| unesp.author.orcid | 0000-0002-2452-2861[3] | |
| unesp.author.orcid | 0000-0002-9068-1713[4] | |
| unesp.author.orcid | 0000-0003-3933-2179[6] | |
| unesp.author.orcid | 0000-0003-3970-8025[7] | |
| unesp.author.orcid | 0000-0002-9248-3008[8] | |
| unesp.author.orcid | 0000-0002-7702-8234[9] | |
| unesp.author.orcid | 0000-0003-1131-9554[10] | |
| unesp.author.orcid | 0000-0002-4081-4653[11] | |
| unesp.author.orcid | 0000-0003-2142-7196[12] | |
| unesp.author.orcid | 0000-0002-3767-6210[13] |
