Logo do repositório

Comparing the Segment Anything Model with Region Growing Algorithms in the detection of irrigated croplands

dc.contributor.authorPetrone, Felipe Gomes
dc.contributor.authorDa Silva, Darlan Teles
dc.contributor.authorMaia, Aluizio Brito
dc.contributor.authorSanches, Ieda Del'Arco
dc.contributor.authorDantas Chaves, Michel Eustáquio [UNESP]
dc.contributor.authorGarcia Fonseca, Leila Maria
dc.contributor.authorKörting, Thales Sehn
dc.contributor.authorAdami, Marcos
dc.contributor.institutionNational Institute for Space Research (INPE)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:04:49Z
dc.date.issued2024-01-01
dc.description.abstractThe advance of remote sensing and geotechnologies has helped to solve agricultural-related problems, especially those connected to management practices such as irrigation. Image segmentation techniques, for example, bring the possibility of identifying areas and borders of irrigated croplands,a factor that can enhance monitoring and yield estimates. In this research field, a recent innovation is the Segment Anything Model (SAM) algorithm. Thus, this study aimed to compare SAM with two well-known remote sensing image segmentation algorithms, Region Growing and Baatz-Schape, in order to delineate irrigated agricultural lands in the Brazilian semiarid region. The findings indicate that SAM has the potential to generate homogeneous segments when examining such lands. However, it requires refinements in order to distinguish fields with varying crops and to improve the high computational cost of SAM, especially for big data. Additionally, the choice and testing of parameters are crucial for the optimal performance of segmentation algorithms.en
dc.description.affiliationNational Institute for Space Research (INPE), SP
dc.description.affiliationSão Paulo State University (UNESP), SP
dc.description.affiliationUnespSão Paulo State University (UNESP), SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: N° 2021/07382-2
dc.identifierhttp://dx.doi.org/10.14393/rbcv76n0a-72592
dc.identifier.citationRevista Brasileira de Cartografia, v. 76.
dc.identifier.doi10.14393/rbcv76n0a-72592
dc.identifier.issn1808-0936
dc.identifier.issn0560-4613
dc.identifier.scopus2-s2.0-85209400887
dc.identifier.urihttps://hdl.handle.net/11449/306011
dc.language.isoeng
dc.relation.ispartofRevista Brasileira de Cartografia
dc.sourceScopus
dc.subjectImage Segmentation
dc.subjectIrrigated Croplands
dc.subjectRemote Sensing Images
dc.titleComparing the Segment Anything Model with Region Growing Algorithms in the detection of irrigated croplandsen
dc.titleComparando o Segment Anything Model com Algoritmos de Crescimento de Regiões na detecção de áreas irrigáveispt
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0009-0003-8140-6925[1]
unesp.author.orcid0000-0001-9784-6464[2]
unesp.author.orcid0000-0002-0056-6157[3]
unesp.author.orcid0000-0003-1296-0933[4]
unesp.author.orcid0000-0002-1498-6830[5]
unesp.author.orcid0000-0001-6057-7387[6]
unesp.author.orcid0000-0002-0876-0501[7]
unesp.author.orcid0000-0003-4247-4477[8]

Arquivos

Coleções