Logotipo do repositório
 

Publicação:
Estimation and influence diagnostics for zero-inflated hyper-Poisson regression model: full Bayesian analysis

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Taylor & Francis Inc

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The purpose of this paper is to develop a Bayesian analysis for the zero-inflated hyper-Poisson model. Markov chain Monte Carlo methods are used to develop a Bayesian procedure for the model and the Bayes estimators are compared by simulation with the maximum-likelihood estimators. Regression modeling and model selection are also discussed and case deletion influence diagnostics are developed for the joint posterior distribution based on the functional Bregman divergence, which includes -divergence and several others, divergence measures, such as the Itakura-Saito, Kullback-Leibler, and (2) divergence measures. Performance of our approach is illustrated in artificial, real apple cultivation experiment data, related to apple cultivation.

Descrição

Palavras-chave

Bayesian inference, hyper-Poisson distribution, Kullback-Leibler divergence, zero-inflated models

Idioma

Inglês

Como citar

Communications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, v. 47, n. 11, p. 2741-2759, 2018.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação