Logotipo do repositório
 

Publicação:
Estimation and influence diagnostics for zero-inflated hyper-Poisson regression model: full Bayesian analysis

dc.contributor.authorCancho, Vicente G.
dc.contributor.authorBao Yiqi
dc.contributor.authorFiorucci, Jose A.
dc.contributor.authorBarriga, Gladys D. C.
dc.contributor.authorDey, Dipak K.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniv Connecticut
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:48:52Z
dc.date.available2018-11-26T17:48:52Z
dc.date.issued2018-01-01
dc.description.abstractThe purpose of this paper is to develop a Bayesian analysis for the zero-inflated hyper-Poisson model. Markov chain Monte Carlo methods are used to develop a Bayesian procedure for the model and the Bayes estimators are compared by simulation with the maximum-likelihood estimators. Regression modeling and model selection are also discussed and case deletion influence diagnostics are developed for the joint posterior distribution based on the functional Bregman divergence, which includes -divergence and several others, divergence measures, such as the Itakura-Saito, Kullback-Leibler, and (2) divergence measures. Performance of our approach is illustrated in artificial, real apple cultivation experiment data, related to apple cultivation.en
dc.description.affiliationUniv Sao Paulo, Sci Inst Math & Comp, Sao Paulo, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Stat, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Connecticut, Dept Stat, Storrs, CT 06269 USA
dc.description.affiliationSao Paulo State Univ, Dept Prod Engn, Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Prod Engn, Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent2741-2759
dc.identifierhttp://dx.doi.org/10.1080/03610926.2017.1342839
dc.identifier.citationCommunications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, v. 47, n. 11, p. 2741-2759, 2018.
dc.identifier.doi10.1080/03610926.2017.1342839
dc.identifier.fileWOS000428574300012.pdf
dc.identifier.issn0361-0926
dc.identifier.urihttp://hdl.handle.net/11449/164037
dc.identifier.wosWOS:000428574300012
dc.language.isoeng
dc.publisherTaylor & Francis Inc
dc.relation.ispartofCommunications In Statistics-theory And Methods
dc.relation.ispartofsjr0,352
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectBayesian inference
dc.subjecthyper-Poisson distribution
dc.subjectKullback-Leibler divergence
dc.subjectzero-inflated models
dc.titleEstimation and influence diagnostics for zero-inflated hyper-Poisson regression model: full Bayesian analysisen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderTaylor & Francis Inc
dspace.entity.typePublication
unesp.departmentEngenharia de Produção - FEBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000428574300012.pdf
Tamanho:
953.65 KB
Formato:
Adobe Portable Document Format
Descrição: