Publicação: Estimation and influence diagnostics for zero-inflated hyper-Poisson regression model: full Bayesian analysis
dc.contributor.author | Cancho, Vicente G. | |
dc.contributor.author | Bao Yiqi | |
dc.contributor.author | Fiorucci, Jose A. | |
dc.contributor.author | Barriga, Gladys D. C. | |
dc.contributor.author | Dey, Dipak K. | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Univ Connecticut | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:48:52Z | |
dc.date.available | 2018-11-26T17:48:52Z | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | The purpose of this paper is to develop a Bayesian analysis for the zero-inflated hyper-Poisson model. Markov chain Monte Carlo methods are used to develop a Bayesian procedure for the model and the Bayes estimators are compared by simulation with the maximum-likelihood estimators. Regression modeling and model selection are also discussed and case deletion influence diagnostics are developed for the joint posterior distribution based on the functional Bregman divergence, which includes -divergence and several others, divergence measures, such as the Itakura-Saito, Kullback-Leibler, and (2) divergence measures. Performance of our approach is illustrated in artificial, real apple cultivation experiment data, related to apple cultivation. | en |
dc.description.affiliation | Univ Sao Paulo, Sci Inst Math & Comp, Sao Paulo, Brazil | |
dc.description.affiliation | Univ Fed Sao Carlos, Dept Stat, Sao Carlos, SP, Brazil | |
dc.description.affiliation | Univ Connecticut, Dept Stat, Storrs, CT 06269 USA | |
dc.description.affiliation | Sao Paulo State Univ, Dept Prod Engn, Bauru, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Prod Engn, Bauru, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.format.extent | 2741-2759 | |
dc.identifier | http://dx.doi.org/10.1080/03610926.2017.1342839 | |
dc.identifier.citation | Communications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, v. 47, n. 11, p. 2741-2759, 2018. | |
dc.identifier.doi | 10.1080/03610926.2017.1342839 | |
dc.identifier.file | WOS000428574300012.pdf | |
dc.identifier.issn | 0361-0926 | |
dc.identifier.uri | http://hdl.handle.net/11449/164037 | |
dc.identifier.wos | WOS:000428574300012 | |
dc.language.iso | eng | |
dc.publisher | Taylor & Francis Inc | |
dc.relation.ispartof | Communications In Statistics-theory And Methods | |
dc.relation.ispartofsjr | 0,352 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Bayesian inference | |
dc.subject | hyper-Poisson distribution | |
dc.subject | Kullback-Leibler divergence | |
dc.subject | zero-inflated models | |
dc.title | Estimation and influence diagnostics for zero-inflated hyper-Poisson regression model: full Bayesian analysis | en |
dc.type | Artigo | |
dcterms.license | http://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp | |
dcterms.rightsHolder | Taylor & Francis Inc | |
dspace.entity.type | Publication | |
unesp.department | Engenharia de Produção - FEB | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000428574300012.pdf
- Tamanho:
- 953.65 KB
- Formato:
- Adobe Portable Document Format
- Descrição: