Logo do repositório

LHC hadronic jet generation using convolutional variational autoencoders with normalizing flows

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In high energy physics, one of the most important processes for collider data analysis is the comparison of collected and simulated data. Nowadays the state-of-the-art for data generation is in the form of Monte Carlo (MC) generators. However, because of the upcoming high-luminosity upgrade of the Large Hadron Collider (LHC), there will not be enough computational power or time to match the amount of needed simulated data using MC methods. An alternative approach under study is the usage of machine learning generative methods to fulfill that task. Since the most common final-state objects of high-energy proton collisions are hadronic jets, which are collections of particles collimated in a given region of space, this work aims to develop a convolutional variational autoencoder (ConVAE) for the generation of particle-based LHC hadronic jets. Given the ConVAE’s limitations, a normalizing flow (NF) network is coupled to it in a two-step training process, which shows improvements on the results for the generated jets. The ConVAE+NF network is capable of generating a jet in 18.30 ± 0.04 μ s , making it one of the fastest methods for this task up to now.

Descrição

Palavras-chave

generative models, high energy physics, hyperparameter tuning, particle physics

Idioma

Inglês

Citação

Machine Learning: Science and Technology, v. 4, n. 4, 2023.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso