Logo do repositório
 

Prediction of intake and average daily gain by different feeding systems for goats

dc.contributor.authorMolina de Almeida Teixeira, Izabelle Auxiliadora [UNESP]
dc.contributor.authorSt-Pierre, Normand
dc.contributor.authorResende, Kleber Tomás de [UNESP]
dc.contributor.authorCannas, Antonello
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionOhio State Univ
dc.contributor.institutionUniv Sassari
dc.date.accessioned2014-05-20T13:19:11Z
dc.date.available2014-05-20T13:19:11Z
dc.date.issued2011-06-01
dc.description.abstractA main purpose of a mathematical nutrition model (a.k.a., feeding systems) is to provide a mathematical approach for determining the amount and composition of the diet necessary for a certain level of animal productive performance. Therefore, feeding systems should be able to predict voluntary feed intake and to partition nutrients into different productive functions and performances. In the last decades, several feeding systems for goats have been developed. The objective of this paper is to compare and evaluate the main goat feeding systems (AFRC, CSIRO, NRC, and SRNS), using data of individual growing goat kids from seven studies conducted in Brazil. The feeding systems were evaluated by regressing the residuals (observed minus predicted) on the predicted values centered on their means. The comparisons showed that these systems differ in their approach for estimating dry matter intake (DMI) and energy requirements for growing goats. The AFRC system was the most accurate for predicting DMI (mean bias = 91 g/d, P < 0.001; linear bias 0.874). The average ADG accounted for a large part of the bias in the prediction of DMI by CSIRO, NRC, and, mainly, AFRC systems. The CSIRO model gave the most accurate predictions of ADG when observed DMI was used as input in the models (mean bias 12 g/d, P < 0.001; linear bias -0.229). while the AFRC was the most accurate when predicted DMI was used (mean bias 8g/d. P > 0.1; linear bias -0.347). (C) 2011 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Zootecnia, BR-14884900 São Paulo, Brazil
dc.description.affiliationOhio State Univ, Dept Anim Sci, Columbus, OH 43210 USA
dc.description.affiliationUniv Sassari, Dipartimento Sci Zootecn, I-07100 Sassari, Italy
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Zootecnia, BR-14884900 São Paulo, Brazil
dc.format.extent93-97
dc.identifierhttp://dx.doi.org/10.1016/j.smallrumres.2011.03.024
dc.identifier.citationSmall Ruminant Research. Amsterdam: Elsevier B.V., v. 98, n. 1-3, p. 93-97, 2011.
dc.identifier.doi10.1016/j.smallrumres.2011.03.024
dc.identifier.fileWOS000292445000018.pdf
dc.identifier.issn0921-4488
dc.identifier.urihttp://hdl.handle.net/11449/4955
dc.identifier.wosWOS:000292445000018
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofSmall Ruminant Research
dc.relation.ispartofjcr0.974
dc.relation.ispartofsjr0,485
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectaverage daily gainen
dc.subjectdry matter intakeen
dc.subjectGoat kidsen
dc.subjectNutrition modelsen
dc.subjectnutritional requirementsen
dc.titlePrediction of intake and average daily gain by different feeding systems for goatsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt
unesp.departmentZootecnia - FCAVpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000292445000018.pdf
Tamanho:
155.33 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: