Logotipo do repositório
 

Publicação:
Stability theory

dc.contributor.authorAfonso, Suzete M. [UNESP]
dc.contributor.authorDa Silva, Fernanda Andrade
dc.contributor.authorBonotto, Everaldo M.
dc.contributor.authorFederson, Márcia
dc.contributor.authorGimenes, Luciene P.
dc.contributor.authorGrau, Rogelio
dc.contributor.authorMesquita, Jaqueline G.
dc.contributor.authorToon, Eduard
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual de Maringá (UEM)
dc.contributor.institutionUniversidad del Norte
dc.contributor.institutionUniversidade de Brasília (UnB)
dc.contributor.institutionUniversidade Federal de Juiz de Fora
dc.date.accessioned2022-04-29T08:37:36Z
dc.date.available2022-04-29T08:37:36Z
dc.date.issued2021-01-01
dc.description.abstractThis chapter presents the study of the stability theory for generalized ordinary differential equations (ODEs). The results on the stability of the trivial solution in the framework of the generalized ODE are inspired in the theory, developed by Aleksandr M. Lyapunov on the stability of solutions for classic ODEs. Converse Lyapunov theorems confirm the effectiveness of the Direct Method of Lyapunov. The chapter presents a concept of a Lyapunov functional for generalized ODEs. The concept of variational stability for ordinary differential equations was introduced by H. Okamura in 1943, who called it strong stability. The chapter presents direct methods of Lyapunov for uniform stability and for uniform asymptotic stability of the trivial solution of the measure differential equations. It examines the concepts of Lyapunov stability in the framework of dynamic equations on time scales. The chapter provides the results for measure differential equations and for dynamic equations on time scales.en
dc.description.affiliationDepartamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)
dc.description.affiliationDepartamento de Matemática Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São Paulo
dc.description.affiliationDepartamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São Paulo
dc.description.affiliationDepartamento de Matemática Centro de Ciências Exatas Universidade Estadual de Maringá
dc.description.affiliationDepartamento de Matemáticas y Estadística División de Ciencias Básicas Universidad del Norte
dc.description.affiliationDepartamento de Matemática Instituto de Ciências Exatas Universidade de Brasília
dc.description.affiliationDepartamento de Matemática Instituto de Ciências Exatas Universidade Federal de Juiz de Fora
dc.description.affiliationUnespDepartamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)
dc.format.extent241-294
dc.identifierhttp://dx.doi.org/10.1002/9781119655022.ch8
dc.identifier.citationGeneralized Ordinary Differential Equations in Abstract Spaces and Applications, p. 241-294.
dc.identifier.doi10.1002/9781119655022.ch8
dc.identifier.scopus2-s2.0-85121481961
dc.identifier.urihttp://hdl.handle.net/11449/230089
dc.language.isoeng
dc.relation.ispartofGeneralized Ordinary Differential Equations in Abstract Spaces and Applications
dc.sourceScopus
dc.subjectAsymptotic stability
dc.subjectDynamic equations
dc.subjectLyapunov theorems
dc.subjectMeasure differential equations
dc.subjectOrdinary differential equations
dc.subjectStability theory
dc.subjectTrivial solution
dc.titleStability theoryen
dc.typeCapítulo de livro
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentMatemática - IGCEpt

Arquivos