Logo do repositório

Non-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding program

dc.contributor.authorLeite, Daniel Carvalho [UNESP]
dc.contributor.authorCorrêa, Aretha Arcenio Pimentel [UNESP]
dc.contributor.authorCunha Júnior, Luis Carlos
dc.contributor.authorLima, Kássio Michell Gomes de
dc.contributor.authorMorais, Camilo de Lelis Medeiros de
dc.contributor.authorVianna, Viviane Formice [UNESP]
dc.contributor.authorTeixeira, Gustavo Henrique de Almeida
dc.contributor.authorDi Mauro, Antonio Orlando [UNESP]
dc.contributor.authorUnêda-Trevisoli, Sandra Helena [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de Goiás (UFG)
dc.contributor.institutionAvenida Senador Salgado Filho
dc.contributor.institutionUniversity of Central Lancashire
dc.date.accessioned2020-12-12T01:24:27Z
dc.date.available2020-12-12T01:24:27Z
dc.date.issued2020-08-01
dc.description.abstractIn soybean (Glycine max L.) breeding programs, segregation is normally observed, and it is not possible to have replicates of individuals because each genotype is a unique copy. Therefore, near-infrared spectroscopy (NIRS) was used as a non-destructive tool to classify soybeans by genotypes and to predict oil content. A total of 260 soybean genotypes were divided into five classes, which were composed of 32, 52, 82, 46, and 49 samples of the BV, BVV, EB, JAB, and L class, respectively. NIR spectra were obtained using oven-dried samples (80 g) in a reflectance mode. A successive projection algorithm and genetic algorithm with linear discriminant analysis discriminated genotypes of the low (L class) from the high (EB class) for oil content (88.89% accuracy). The partial least square regression models for oil content were considered good (root mean square error of prediction of 0.96%). Therefore, NIRS can be used as a non-destructive tool in soybean breeding programs, but further investigation is necessary to improve the robustness of the models. It is important to note that to use the models, it is necessary to collect NIR spectra from dry soybean samples.en
dc.description.affiliationUniversidade Estadual Paulista (UNESP) Faculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal, Via deacesso Prof. Paulo Donato Castellane s/n
dc.description.affiliationUniversidade Federal de Goiás (UFG) Escola de Agronomia (EA) Goânia – GO, Rodovia Goiânia/Nova Veneza Km 0 Campos Samambaia
dc.description.affiliationUniversidade Federal do Rio Grande do Norte (UFRN) Instituto de Química Química Biológica e Quimiometria Avenida Senador Salgado Filho, n° 3000, Bairro de Lagoa Nova
dc.description.affiliationSchool of Pharmacy and Biomedical Sciences University of Central Lancashire, Preston
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) Faculdade de Ciências Agrárias e Veterinárias (FCAV) Campus de Jaboticabal, Via deacesso Prof. Paulo Donato Castellane s/n
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2011/12958-9
dc.identifierhttp://dx.doi.org/10.1016/j.jfca.2020.103536
dc.identifier.citationJournal of Food Composition and Analysis, v. 91.
dc.identifier.doi10.1016/j.jfca.2020.103536
dc.identifier.issn0889-1575
dc.identifier.lattes5024867533498026
dc.identifier.orcid0000-0003-3060-924X
dc.identifier.scopus2-s2.0-85085341778
dc.identifier.urihttp://hdl.handle.net/11449/198879
dc.language.isoeng
dc.relation.ispartofJournal of Food Composition and Analysis
dc.sourceScopus
dc.subjectGenetic algorithm (GA) with LDA (GA-LDA)
dc.subjectGlycine maxL.
dc.subjectPCA with linear discriminant analysis (PCA-LDA)
dc.subjectPrincipal component analysis (PCA)
dc.subjectSuccessive projection algorithm (SPA) with LDA (SPA-LDA)
dc.titleNon-destructive genotypes classification and oil content prediction using near-infrared spectroscopy and chemometric tools in soybean breeding programen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication3d807254-e442-45e5-a80b-0f6bf3a26e48
relation.isOrgUnitOfPublication.latestForDiscovery3d807254-e442-45e5-a80b-0f6bf3a26e48
unesp.author.lattes5024867533498026[9]
unesp.author.orcid0000-0003-3060-924X[9]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt

Arquivos