Publicação: Unsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks
dc.contributor.author | Guimaraes Pedronette, Daniel Carlos [UNESP] | |
dc.contributor.author | Penatti, Otavio A. B. | |
dc.contributor.author | Torres, Ricardo da S. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | SAMSUNG Res Inst | |
dc.date.accessioned | 2014-12-03T13:11:26Z | |
dc.date.available | 2014-12-03T13:11:26Z | |
dc.date.issued | 2014-02-01 | |
dc.description.abstract | In this paper, we present an unsupervised distance learning approach for improving the effectiveness of image retrieval tasks. We propose a Reciprocal kNN Graph algorithm that considers the relationships among ranked lists in the context of a k-reciprocal neighborhood. The similarity is propagated among neighbors considering the geometry of the dataset manifold. The proposed method can be used both for re-ranking and rank aggregation tasks. Unlike traditional diffusion process methods, which require matrix multiplication operations, our algorithm takes only a subset of ranked lists as input, presenting linear complexity in terms of computational and storage requirements. We conducted a large evaluation protocol involving shape, color, and texture descriptors, various datasets, and comparisons with other post-processing approaches. The re-ranking and rank aggregation algorithms yield better results in terms of effectiveness performance than various state-of-the-art algorithms recently proposed in the literature, achieving bull's eye and MAP scores of 100% on the well-known MPEG-7 shape dataset (C) 2013 Elsevier B.V. All rights reserved. | en |
dc.description.affiliation | Univ Estadual Paulista UNESP, Dept Stat Appl Math & Comp, BR-13506900 Rio Claro, SP, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, IC, RECOD Lab, BR-13083852 Campinas, SP, Brazil | |
dc.description.affiliation | SAMSUNG Res Inst, BR-13097104 Campinas, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista UNESP, Dept Stat Appl Math & Comp, BR-13506900 Rio Claro, SP, Brazil | |
dc.description.sponsorship | AMD | |
dc.description.sponsorship | FAEPEX | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.format.extent | 120-130 | |
dc.identifier | http://dx.doi.org/10.1016/j.imavis.2013.12.009 | |
dc.identifier.citation | Image And Vision Computing. Amsterdam: Elsevier Science Bv, v. 32, n. 2, p. 120-130, 2014. | |
dc.identifier.doi | 10.1016/j.imavis.2013.12.009 | |
dc.identifier.issn | 0262-8856 | |
dc.identifier.uri | http://hdl.handle.net/11449/113145 | |
dc.identifier.wos | WOS:000332905300003 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Image And Vision Computing | |
dc.relation.ispartofjcr | 2.159 | |
dc.relation.ispartofsjr | 0,612 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Content-based image retrieval | en |
dc.subject | Re-ranking | en |
dc.subject | Rank aggregation | en |
dc.title | Unsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Matemática - IGCE | pt |