Publicação:
Unsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks

dc.contributor.authorGuimaraes Pedronette, Daniel Carlos [UNESP]
dc.contributor.authorPenatti, Otavio A. B.
dc.contributor.authorTorres, Ricardo da S.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionSAMSUNG Res Inst
dc.date.accessioned2014-12-03T13:11:26Z
dc.date.available2014-12-03T13:11:26Z
dc.date.issued2014-02-01
dc.description.abstractIn this paper, we present an unsupervised distance learning approach for improving the effectiveness of image retrieval tasks. We propose a Reciprocal kNN Graph algorithm that considers the relationships among ranked lists in the context of a k-reciprocal neighborhood. The similarity is propagated among neighbors considering the geometry of the dataset manifold. The proposed method can be used both for re-ranking and rank aggregation tasks. Unlike traditional diffusion process methods, which require matrix multiplication operations, our algorithm takes only a subset of ranked lists as input, presenting linear complexity in terms of computational and storage requirements. We conducted a large evaluation protocol involving shape, color, and texture descriptors, various datasets, and comparisons with other post-processing approaches. The re-ranking and rank aggregation algorithms yield better results in terms of effectiveness performance than various state-of-the-art algorithms recently proposed in the literature, achieving bull's eye and MAP scores of 100% on the well-known MPEG-7 shape dataset (C) 2013 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista UNESP, Dept Stat Appl Math & Comp, BR-13506900 Rio Claro, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, IC, RECOD Lab, BR-13083852 Campinas, SP, Brazil
dc.description.affiliationSAMSUNG Res Inst, BR-13097104 Campinas, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Dept Stat Appl Math & Comp, BR-13506900 Rio Claro, SP, Brazil
dc.description.sponsorshipAMD
dc.description.sponsorshipFAEPEX
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent120-130
dc.identifierhttp://dx.doi.org/10.1016/j.imavis.2013.12.009
dc.identifier.citationImage And Vision Computing. Amsterdam: Elsevier Science Bv, v. 32, n. 2, p. 120-130, 2014.
dc.identifier.doi10.1016/j.imavis.2013.12.009
dc.identifier.issn0262-8856
dc.identifier.urihttp://hdl.handle.net/11449/113145
dc.identifier.wosWOS:000332905300003
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofImage And Vision Computing
dc.relation.ispartofjcr2.159
dc.relation.ispartofsjr0,612
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectContent-based image retrievalen
dc.subjectRe-rankingen
dc.subjectRank aggregationen
dc.titleUnsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasksen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentMatemática - IGCEpt

Arquivos