Logotipo do repositório
 

Publicação:
Applying Computational Intelligence Methods to Modeling and Predicting Common Bean Germination Rates

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The relationship between seed germination rate and environmental temperature is complex. This study assessed the effectiveness of multi-layer perceptron (MLP) and Particle Swarm Optimization (PSO) techniques in modeling and predicting the germination rate of two common bean cultivars as a function of distinct temperatures. MLP was utilized to model the germination rate of the cultivars and PSO was employed to determine the optimum temperatures at which the beans germinate most rapidly. The outcomes derived from implementing the MLP were compared with those obtained by means of a traditional statistical method. The MLP provided more accurate results than the conventional statistical regression in predicting germination rate values regarding the two common bean cultivars. The optimum germination rate values derived from implementing the PSO model were more accurate than those obtained by using the conventional quadratic regression.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Proceedings Of The 2014 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 658-662, 2014.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação