Logotipo do repositório
 

Publicação:
Parkinson Disease Identification using Residual Networks and Optimum-Path Forest

dc.contributor.authorPassos, Leandro A.
dc.contributor.authorPereira, Clayton R. [UNESP]
dc.contributor.authorRezende, Edmar R. S.
dc.contributor.authorCarvalho, Tiago J.
dc.contributor.authorWeber, Silke A. T. [UNESP]
dc.contributor.authorHook, Christian
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCTI Renato Archer
dc.contributor.institutionFed Inst Sao Paulo
dc.contributor.institutionOstbayer Tech Hsch
dc.date.accessioned2019-10-04T13:42:57Z
dc.date.available2019-10-04T13:42:57Z
dc.date.issued2018-01-01
dc.description.abstractKnown as one of the most significant neurodegenerative diseases of the central nervous system, Parkinson's disease (PD) has a combination of several symptoms, such as tremor, postural instability, loss of movements, depression, anxiety, and dementia, among others. For the medicine, to point an exam that can diagnose a patient with such illness is challenging due to the symptoms that are easily related to other diseases. Therefore, developing computational methods capable of identifying PD in its early stages has been of paramount importance in the scientific community. Thence, this paper proposes to use a deep neural network called ResNet-50 to learn the patterns and extract features from images draw by patients. Afterwards, the Optimum-Path Forest (OPF) classifier is employed to identify Parkinson's disease automatically, being the results compared against two well-known classifiers, i.e., Support Vector Machines and the Bayes, as well as the ones provided by ResNet-50 itself. The experiments showed promising results concerning OPF, reaching over 96% of identification rate.en
dc.description.affiliationUniv Fed Sao Carlos, UFSCAR, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, UNESP, Sch Sci, Bauru, Brazil
dc.description.affiliationCTI Renato Archer, Campinas, SP, Brazil
dc.description.affiliationFed Inst Sao Paulo, IFSP, Dept Comp, Campinas, SP, Brazil
dc.description.affiliationSao Paulo State Univ, UNESP, Med Sch, Botucatu, SP, Brazil
dc.description.affiliationOstbayer Tech Hsch, Fak Informat Math, Regensburg, Germany
dc.description.affiliationUnespSao Paulo State Univ, UNESP, Sch Sci, Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, UNESP, Med Sch, Botucatu, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2015/25739-4
dc.description.sponsorshipIdFAPESP: 2016/21243-7
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.format.extent325-329
dc.identifier.citation2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 325-329, 2018.
dc.identifier.urihttp://hdl.handle.net/11449/186245
dc.identifier.wosWOS:000448144200057
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectParkinson's Disease
dc.subjectResidual Networks
dc.subjectMachine Learning
dc.titleParkinson Disease Identification using Residual Networks and Optimum-Path Foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos