Publicação: Manifold Learning-based Clustering Approach Applied to Anomaly Detection in Surveillance Videos
dc.contributor.author | Lopes, Leonardo Tadeu [UNESP] | |
dc.contributor.author | Valem, Lucas Pascotti [UNESP] | |
dc.contributor.author | Guimaraes Pedronette, Daniel Carlos [UNESP] | |
dc.contributor.author | Guilherme, Ivan Rizzo [UNESP] | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.author | Silva Santana, Marcos Cleison [UNESP] | |
dc.contributor.author | Colombo, Danilo | |
dc.contributor.author | Farinella, G. M. | |
dc.contributor.author | Radeva, P. | |
dc.contributor.author | Braz, J. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Petr Brasileiro SA Petrobras | |
dc.date.accessioned | 2021-06-25T12:21:14Z | |
dc.date.available | 2021-06-25T12:21:14Z | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | The huge increase in the amount of multimedia data available and the pressing need for organizing them in different categories, especially in scenarios where there are no labels available, makes data clustering an essential task in different scenarios. In this work, we present a novel clustering method based on an unsupervised manifold learning algorithm, in which a more effective similarity measure is computed by the manifold learning and used for clustering purposes. The proposed approach is applied to anomaly detection in videos and used in combination with different background segmentation methods to improve their effectiveness. An experimental evaluation is conducted on three different image datasets and one video dataset. The obtained results indicate superior accuracy in most clustering tasks when compared to the baselines. Results also demonstrate that the clustering step can improve the results of background subtraction approaches in the majority of cases. | en |
dc.description.affiliation | Sao Paulo State Univ, UNESP, Dept Stat Appl Math & Comp, Rio Claro, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, UNESP, Sch Sci, Bauru, SP, Brazil | |
dc.description.affiliation | Petr Brasileiro SA Petrobras, Cenpes, Rio De Janeiro, RJ, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, UNESP, Dept Stat Appl Math & Comp, Rio Claro, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, UNESP, Sch Sci, Bauru, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Petrobras | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2017/25908-6 | |
dc.description.sponsorshipId | FAPESP: 2018/15597-6 | |
dc.description.sponsorshipId | FAPESP: 2018/21934-5 | |
dc.description.sponsorshipId | FAPESP: 2019/07825-1 | |
dc.description.sponsorshipId | FAPESP: 2019/022055 | |
dc.description.sponsorshipId | CNPq: 308194/20179 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.description.sponsorshipId | CNPq: 427968/2018-6 | |
dc.description.sponsorshipId | Petrobras: 2017/00285-6 | |
dc.format.extent | 404-412 | |
dc.identifier | http://dx.doi.org/10.5220/0008974604040412 | |
dc.identifier.citation | Proceedings Of The 15th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications, Vol 5: Visapp. Setubal: Scitepress, p. 404-412, 2020. | |
dc.identifier.doi | 10.5220/0008974604040412 | |
dc.identifier.uri | http://hdl.handle.net/11449/209526 | |
dc.identifier.wos | WOS:000576655800043 | |
dc.language.iso | eng | |
dc.publisher | Scitepress | |
dc.relation.ispartof | Proceedings Of The 15th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications, Vol 5: Visapp | |
dc.source | Web of Science | |
dc.subject | Clustering | |
dc.subject | Unsupervised Manifold Learning | |
dc.subject | Anomaly Detection | |
dc.subject | Video Surveillance | |
dc.title | Manifold Learning-based Clustering Approach Applied to Anomaly Detection in Surveillance Videos | en |
dc.type | Trabalho apresentado em evento | |
dcterms.rightsHolder | Scitepress | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Matemática - IGCE | pt |