Logotipo do repositório
 

Publicação:
Manifold Learning-based Clustering Approach Applied to Anomaly Detection in Surveillance Videos

dc.contributor.authorLopes, Leonardo Tadeu [UNESP]
dc.contributor.authorValem, Lucas Pascotti [UNESP]
dc.contributor.authorGuimaraes Pedronette, Daniel Carlos [UNESP]
dc.contributor.authorGuilherme, Ivan Rizzo [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorSilva Santana, Marcos Cleison [UNESP]
dc.contributor.authorColombo, Danilo
dc.contributor.authorFarinella, G. M.
dc.contributor.authorRadeva, P.
dc.contributor.authorBraz, J.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionPetr Brasileiro SA Petrobras
dc.date.accessioned2021-06-25T12:21:14Z
dc.date.available2021-06-25T12:21:14Z
dc.date.issued2020-01-01
dc.description.abstractThe huge increase in the amount of multimedia data available and the pressing need for organizing them in different categories, especially in scenarios where there are no labels available, makes data clustering an essential task in different scenarios. In this work, we present a novel clustering method based on an unsupervised manifold learning algorithm, in which a more effective similarity measure is computed by the manifold learning and used for clustering purposes. The proposed approach is applied to anomaly detection in videos and used in combination with different background segmentation methods to improve their effectiveness. An experimental evaluation is conducted on three different image datasets and one video dataset. The obtained results indicate superior accuracy in most clustering tasks when compared to the baselines. Results also demonstrate that the clustering step can improve the results of background subtraction approaches in the majority of cases.en
dc.description.affiliationSao Paulo State Univ, UNESP, Dept Stat Appl Math & Comp, Rio Claro, SP, Brazil
dc.description.affiliationSao Paulo State Univ, UNESP, Sch Sci, Bauru, SP, Brazil
dc.description.affiliationPetr Brasileiro SA Petrobras, Cenpes, Rio De Janeiro, RJ, Brazil
dc.description.affiliationUnespSao Paulo State Univ, UNESP, Dept Stat Appl Math & Comp, Rio Claro, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, UNESP, Sch Sci, Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipPetrobras
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.description.sponsorshipIdFAPESP: 2018/15597-6
dc.description.sponsorshipIdFAPESP: 2018/21934-5
dc.description.sponsorshipIdFAPESP: 2019/07825-1
dc.description.sponsorshipIdFAPESP: 2019/022055
dc.description.sponsorshipIdCNPq: 308194/20179
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.description.sponsorshipIdPetrobras: 2017/00285-6
dc.format.extent404-412
dc.identifierhttp://dx.doi.org/10.5220/0008974604040412
dc.identifier.citationProceedings Of The 15th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications, Vol 5: Visapp. Setubal: Scitepress, p. 404-412, 2020.
dc.identifier.doi10.5220/0008974604040412
dc.identifier.urihttp://hdl.handle.net/11449/209526
dc.identifier.wosWOS:000576655800043
dc.language.isoeng
dc.publisherScitepress
dc.relation.ispartofProceedings Of The 15th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications, Vol 5: Visapp
dc.sourceWeb of Science
dc.subjectClustering
dc.subjectUnsupervised Manifold Learning
dc.subjectAnomaly Detection
dc.subjectVideo Surveillance
dc.titleManifold Learning-based Clustering Approach Applied to Anomaly Detection in Surveillance Videosen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderScitepress
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentMatemática - IGCEpt

Arquivos