Existence of solutions to a 1-Laplacian problem with a concave-convex nonlinearity
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
In this paper, we analyze a “concave-convex” type problem involving the 1-Laplacian operator in a general Lipschitz–continuous domain and prove the existence of two positive solutions. Owing to 1-Laplacian is 0-homogeneous, the “concave” term must be singular. Hence, we should deal with an energy functional having two non–differentiable terms: the total variation and that one coming from the singular term. Due to these difficulties, we do not get solutions as critical points of the energy functional defined in the BV(Ω) space. Instead, we study problems involving the p-Laplacian operator and let p go to 1.
Descrição
Palavras-chave
1-Laplacian operator, Concave-convex nonlinearities, Singular term
Idioma
Inglês
Citação
Journal of Mathematical Analysis and Applications, v. 525, n. 2, 2023.





