Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Increasing landslide susceptibility in urbanized areas of Petrópolis identified through spatio-temporal analysis

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This study conducts a detailed spatio-temporal analysis of landslide susceptibility in Petrópolis, Rio de Janeiro, leveraging data from recorded landslide events between 1985 and 2022. Employing Logistic Regression (LR) and Multiscale Geographically Weighted Regression (MGWR), we generated susceptibility maps for years with the highest landslide occurrences, enabling an evaluation of spatial variability and localized influences of conditioning factors. Significant variables included lithology, land use and land cover (LULC), total precipitation (PRCPTOT), extreme rainfall events (R100), distance from rivers, soil type, slope aspect, elevation, and forest cover. Lithology and LULC showed the strongest positive correlations with landslide occurrences, while forest cover and elevation exhibited protective effects. The model's predictive performance was validated with AUC values ranging from 0.77 to 0.99 and accuracy between 0.77 and 0.97, demonstrating robustness across different temporal scales. Susceptibility maps revealed a temporal increase in areas classified as very high susceptibility, particularly in urbanized zones. These findings address critical gaps in the understanding of landslide dynamics, providing a robust framework for integrating susceptibility maps into disaster risk reduction strategies and urban planning. By identifying key conditioning factors and their spatial variability, this study contributes to more effective mitigation measures and the development of evidence-based policies to enhance resilience in high-risk areas.

Descrição

Palavras-chave

Frequency ratio, Logistic regression, LULC, MWGR, Spatial heterogeneity

Idioma

Inglês

Citação

Journal of South American Earth Sciences, v. 160.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso