Logotipo do repositório
 

Publicação:
High performance of chlorophyll-a prediction algorithms based on simulated OLCI Sentinel-3A bands in cyanobacteria-dominated inland waters

dc.contributor.authorWatanabe, Fernanda Sayuri Yoshino [UNESP]
dc.contributor.authorAlcântara, Enner [UNESP]
dc.contributor.authorStech, José Luiz
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais (INPE)
dc.date.accessioned2018-12-11T17:19:56Z
dc.date.available2018-12-11T17:19:56Z
dc.date.issued2018-07-15
dc.description.abstractIn this research, we have investigated whether the chlorophyll-a (chl a) retrieval algorithms based on OLCI Sentinel-3A bands are suitable for cyanobacteria-dominated waters. Phytoplankton assemblages model optical properties of the water, influencing the performance of bio-optical algorithms. Understanding these processes is important to improve the prediction of photoactive pigments in order to use them as a proxy for trophic state and harmful algal bloom. So that, both empirical and semi-analytical approaches designed for different inland waters were tested. In addition, empirical models were tuned based on dataset collected in situ. The study was conducted in the Funil hydroelectric reservoir, where chl a ranged from 2.33 to 208.68 mg m−3 in May 2012 (austral fall) and 4.37 to 306.03 mg m−3 in October 2012 (austral spring). OLCI Sentinel-3A bands were tested in existing algorithms developed for other sensors and new band combinations were compared to analyze the errors produced. Normalized Difference Chlorophyll Index (NDCI) exhibited the best performance, with a Normalized Root Mean Square Error (NRMSE) of 9.30%. Result showed that wavelength at 665 nm is adequate to estimate chl a, although the maximum pigment absorption band is shifted due to phycocyanin fluorescence at approximately 650 nm.en
dc.description.affiliationDepartment of Cartography Universidade Estadual Paulista (UNESP), Rua Roberto Simonsen, 305
dc.description.affiliationDepartment of Environmental Engineering Universidade Estadual Paulista (UNESP), Rodovia Presidente Dutra, Km 137,8, Eugenio de Melo
dc.description.affiliationRemote Sensing Division Instituto Nacional de Pesquisas Espaciais (INPE), Avenida dos Astronautas, 1758
dc.description.affiliationUnespDepartment of Cartography Universidade Estadual Paulista (UNESP), Rua Roberto Simonsen, 305
dc.description.affiliationUnespDepartment of Environmental Engineering Universidade Estadual Paulista (UNESP), Rodovia Presidente Dutra, Km 137,8, Eugenio de Melo
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2011/19523-8
dc.description.sponsorshipIdFAPESP: 2015/18525-8
dc.description.sponsorshipIdCNPq: 471223/2011-5
dc.format.extent265-273
dc.identifierhttp://dx.doi.org/10.1016/j.asr.2018.04.024
dc.identifier.citationAdvances in Space Research, v. 62, n. 2, p. 265-273, 2018.
dc.identifier.doi10.1016/j.asr.2018.04.024
dc.identifier.file2-s2.0-85046623678.pdf
dc.identifier.issn1879-1948
dc.identifier.issn0273-1177
dc.identifier.lattes6691310394410490
dc.identifier.orcid0000-0002-8077-2865
dc.identifier.scopus2-s2.0-85046623678
dc.identifier.urihttp://hdl.handle.net/11449/176283
dc.language.isoeng
dc.relation.ispartofAdvances in Space Research
dc.relation.ispartofsjr0,569
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectCase-2 waters
dc.subjectHarmful algal bloom
dc.subjectRemote sensing
dc.subjectWater quality
dc.titleHigh performance of chlorophyll-a prediction algorithms based on simulated OLCI Sentinel-3A bands in cyanobacteria-dominated inland watersen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes6691310394410490[1]
unesp.author.orcid0000-0002-7777-2119[2]
unesp.author.orcid0000-0002-8077-2865[1]
unesp.departmentCartografia - FCTpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85046623678.pdf
Tamanho:
1.96 MB
Formato:
Adobe Portable Document Format
Descrição: