Extraction of 5-Hydroxymethylfurfural and Furfural in Aqueous Biphasic Systems: A COSMO-RS Guided Approach to Greener Solvent Selection
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
5-Hydroxymethylfurfural (HMF) and furfural (Fur) are promising biobased platform chemicals, derived from the dehydration of carbohydrate feedstocks, normally conducted in an aqueous phase. Plagued by side-reactions in such phase, such as the rehydration to levulinic acid (LA) and formic acid (FA) or self-condensation to humins, HMF and Fur necessitates diversification from monophasic aqueous reaction systems toward biphasic systems to mitigate undesired side-reactions. Here, a methodology based on the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) method was used to screen solvent candidates based on the predicted partition coefficients (Ki). Hansen solubility parameters in conjunction with excess thermodynamic quantities determined by COSMO-RS were employed to assess solvent compatibility. Experimental validation of the COSMO-RS values highlighted only minor deviations from the predictions with root-mean-square-error (RMSE) values of HMF and Fur at 0.76 and 5.32, respectively, at 298 K. The combined effort suggested cyclohexanone, isophorone, and methyl isobutyl ketone (MIBK) as the best candidates. Finally, extraction solvent reuse demonstrated cyclohexanone suitability for HMF extraction with KHMF of 3.66 and MIBK for Fur with KFur 7.80 with consistent partitioning across four total runs. Both solvents are classified as recommended by the CHEM21 solvent selection guide, hence adding to the sustainability of the process.
Descrição
Palavras-chave
COSMO-RS, extraction, Furans, green solvent, partition coefficient, solvent recovery
Idioma
Inglês
Citação
ACS Sustainable Chemistry and Engineering, v. 12, n. 9, p. 3766-3779, 2024.


