Logo do repositório

A Quantum-inspired Approach to Estimate Optimum-Path Forest Prototypes based on the Traveling Salesman Problem

dc.contributor.authorMiranda, Maria Angélica Krüger
dc.contributor.authorFanchini, Felipe Fernandes [UNESP]
dc.contributor.authorPassos, Leandro Aparecido [UNESP]
dc.contributor.authorRodrigues, Douglas [UNESP]
dc.contributor.authorCosta, Kelton Augusto Pontara da [UNESP]
dc.contributor.authorSherer, Rafał
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionCzestochowa University of Technology
dc.date.accessioned2025-04-29T20:10:14Z
dc.date.issued2025-01-01
dc.description.abstractQuantum mechanics emerge as a promise for the future of computing, broadening the horizons for solutions concerning complex tasks, e.g., NP-hard problems. Alongside quantum computing, machine learning has become indispensable. This paper explores the potential integration of quantum computing principles into the Optimum-Path Forest (OPF), a graph-based framework comprised of solutions for machine learning, optimization, and image processing. We are particularly interested in the supervised OPF approach, which elects the most representative samples for each class, aka prototypes, as the connected samples from different classes in a minimum spanning tree (MST) computed over the training set. By harnessing quantum parallelism and superposition, this paper introduces a new approach to identifying prototypes employing a quantum-based Traveler Salesman Problem (TSP) algorithm, which provides an alternative to computing MSTs and yields a hybrid version of the OPF classifier. The experiments on established datasets demonstrated the promising potential of this approach while also underscoring the necessity for further research in this field.en
dc.description.affiliationInstitute of Computing Campinas State University - UNICAMP
dc.description.affiliationSão Paulo State University (UNESP) School of Sciences
dc.description.affiliationInstitute of Computational Intelligence Czestochowa University of Technology
dc.description.affiliationUnespSão Paulo State University (UNESP) School of Sciences
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2019/07665-4
dc.description.sponsorshipIdFAPESP: 2021/04655-8
dc.description.sponsorshipIdFAPESP: 2023/03726-4
dc.description.sponsorshipIdFAPESP: 2023/10823-6
dc.description.sponsorshipIdFAPESP: 2023/12830-0
dc.description.sponsorshipIdFAPESP: 2023/14427-8
dc.format.extent85-98
dc.identifierhttp://dx.doi.org/10.1007/978-3-031-78183-4_6
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 15307 LNCS, p. 85-98.
dc.identifier.doi10.1007/978-3-031-78183-4_6
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85212279034
dc.identifier.urihttps://hdl.handle.net/11449/307732
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceScopus
dc.subjectMachine Learning
dc.subjectOptimum-Path Forest.
dc.subjectQuantum Computing
dc.subjectQuantum Optimization
dc.titleA Quantum-inspired Approach to Estimate Optimum-Path Forest Prototypes based on the Traveling Salesman Problemen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0009-0003-7811-9116[1]
unesp.author.orcid0000-0003-3297-905X[2]
unesp.author.orcid0000-0003-3529-3109[3]
unesp.author.orcid0000-0003-0594-3764[4]
unesp.author.orcid0000-0001-5458-3908[5]
unesp.author.orcid0000-0001-9592-262X[6]

Arquivos

Coleções