Logotipo do repositório
 

Publicação:
Bayesian outlier analysis in binary regression

dc.contributor.authorSouza, Aparecida D. P. [UNESP]
dc.contributor.authorMigon, Helio S.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.date.accessioned2014-05-20T15:31:48Z
dc.date.available2014-05-20T15:31:48Z
dc.date.issued2010-01-01
dc.description.abstractWe propose alternative approaches to analyze residuals in binary regression models based on random effect components. Our preferred model does not depend upon any tuning parameter, being completely automatic. Although the focus is mainly on accommodation of outliers, the proposed methodology is also able to detect them. Our approach consists of evaluating the posterior distribution of random effects included in the linear predictor. The evaluation of the posterior distributions of interest involves cumbersome integration, which is easily dealt with through stochastic simulation methods. We also discuss different specifications of prior distributions for the random effects. The potential of these strategies is compared in a real data set. The main finding is that the inclusion of extra variability accommodates the outliers, improving the adjustment of the model substantially, besides correctly indicating the possible outliers.en
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil
dc.description.affiliationUniv Fed Rio de Janeiro, Inst Matemat, Rio de Janeiro, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, SP, Brazil
dc.format.extent1355-1368
dc.identifierhttp://dx.doi.org/10.1080/02664760903031153
dc.identifier.citationJournal of Applied Statistics. Abingdon: Routledge Journals, Taylor & Francis Ltd, v. 37, n. 8, p. 1355-1368, 2010.
dc.identifier.doi10.1080/02664760903031153
dc.identifier.issn0266-4763
dc.identifier.lattes2628413289391037
dc.identifier.urihttp://hdl.handle.net/11449/40841
dc.identifier.wosWOS:000280810900008
dc.language.isoeng
dc.publisherRoutledge Journals, Taylor & Francis Ltd
dc.relation.ispartofJournal of Applied Statistics
dc.relation.ispartofjcr0.699
dc.relation.ispartofsjr0,475
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectbinary regression modelsen
dc.subjectBayesian residualen
dc.subjectrandom effecten
dc.subjectmixture of normalsen
dc.subjectMarkov chain Monte Carloen
dc.titleBayesian outlier analysis in binary regressionen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderRoutledge Journals, Taylor & Francis Ltd
dspace.entity.typePublication
unesp.author.lattes2628413289391037
unesp.author.lattes8859883555687056[1]
unesp.author.orcid0000-0001-9533-5804[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentEstatística - FCTpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: