Logotipo do repositório
 

Publicação:
Unsupervised distance learning by reciprocal kNN distance for image retrieval

dc.contributor.authorPedronette, Daniel C. G. [UNESP]
dc.contributor.authorPenatti, Otávio A. B.
dc.contributor.authorCalumby, Rodrigo T.
dc.contributor.authorDa S. Torres, Ricardo
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionAdvanced Technologies, SAMSUNG Research Institute
dc.date.accessioned2018-12-11T16:55:48Z
dc.date.available2018-12-11T16:55:48Z
dc.date.issued2014-01-01
dc.description.abstractThis paper presents a novel unsupervised learning approach that takes into account the intrinsic dataset structure, which is represented in terms of the reciprocal neighborhood references found in different ranked lists. The proposed Reciprocal kNN Distance defines a more effective distance between two images, and is used to improve the effectiveness of image retrieval systems. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors. The proposed approach is also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate the effectiveness of proposed approach. The Reciprocal kNN Distance yields better results in terms of effectiveness than various state-of-the-art algorithms. Copyright © 2014 ACM.en
dc.description.affiliationDepartment of Statistic, Applied Math. and Computing, Universidade Estadual Paulista (UNESP), Rio-Claro, SP, 13506-900
dc.description.affiliationRECOD Lab., Institute of Computing, University of Campinas (UNICAMP), Campinas, SP, 13083-852
dc.description.affiliationAdvanced Technologies, SAMSUNG Research Institute, Campinas, SP, 13097-104
dc.description.affiliationDepartment of Exact Sciences, University of Feira de Santana (UEFS), Feira de Santana, BA, 44036-900
dc.description.affiliationUnespDepartment of Statistic, Applied Math. and Computing, Universidade Estadual Paulista (UNESP), Rio-Claro, SP, 13506-900
dc.description.sponsorshipAdvanced Micro Devices
dc.format.extent345-352
dc.identifierhttp://dx.doi.org/10.1145/2578726.2578770
dc.identifier.citationICMR 2014 - Proceedings of the ACM International Conference on Multimedia Retrieval 2014, p. 345-352.
dc.identifier.doi10.1145/2578726.2578770
dc.identifier.scopus2-s2.0-84899769548
dc.identifier.urihttp://hdl.handle.net/11449/171552
dc.language.isoeng
dc.relation.ispartofICMR 2014 - Proceedings of the ACM International Conference on Multimedia Retrieval 2014
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectContent-based image retrieval
dc.subjectUnsupervised distance learning
dc.titleUnsupervised distance learning by reciprocal kNN distance for image retrievalen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos