Logotipo do repositório
 

Publicação:
Mineração de Dados no LinkedIn para Definição do Perfil Profissional com a Metodologia MineraSkill

dc.contributor.authorCaldeira, Dayane C. M. F. [UNESP]
dc.contributor.authorCorreia, Ronaldo C. M. [UNESP]
dc.contributor.authorSpadon, Gabriel [UNESP]
dc.contributor.authorEler, Danilo M. [UNESP]
dc.contributor.authorOlivete-Jr, Celso [UNESP]
dc.contributor.authorGarcia, Rogerio E. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:13:53Z
dc.date.available2018-12-11T17:13:53Z
dc.date.issued2017-07-11
dc.description.abstractSocial networks are of significant analytical interest. This is because their data are generated in great quantity, and intermittently, besides that, the data are from a wide variety, and it is widely available to users. Through such data, it is desired to extract knowledge or information that can be used in decision-making activities. In this context, we have identified the lack of methods that apply data mining techniques to the task of analyzing the professional profile of employees. The aim of such analyses is to detect competencies that are of greater interest by being more required and also, to identify their associative relations. Thus, this work introduces MineraSkill methodology that deals with methods to infer the desired profile of a candidate for a job vacancy. In order to do so, we use keyword detection via natural language processing techniques; which are related to others by inferring their association rules. The results are presented in the form of a case study, which analyzed data from LinkedIn, demonstrating the potential of the methodology in indicating trending competencies that are required together.en
dc.description.affiliationDepartamento de Matemática e Computação (DMC) Universidade Estadual Paulista (FCT/UNESP) Presidente Prudente
dc.description.affiliationUnespDepartamento de Matemática e Computação (DMC) Universidade Estadual Paulista (FCT/UNESP) Presidente Prudente
dc.identifierhttp://dx.doi.org/10.23919/CISTI.2017.7975730
dc.identifier.citationIberian Conference on Information Systems and Technologies, CISTI.
dc.identifier.doi10.23919/CISTI.2017.7975730
dc.identifier.issn2166-0735
dc.identifier.issn2166-0727
dc.identifier.lattes2616135175972629
dc.identifier.scopus2-s2.0-85027068892
dc.identifier.urihttp://hdl.handle.net/11449/175024
dc.language.isopor
dc.relation.ispartofIberian Conference on Information Systems and Technologies, CISTI
dc.relation.ispartofsjr0,136
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectData Mining
dc.subjectMineraSkill
dc.subjectNatural Language Processing
dc.subjectProfessional Profile
dc.titleMineração de Dados no LinkedIn para Definição do Perfil Profissional com a Metodologia MineraSkillpt
dc.title.alternativeData mining on LinkedIn data to define professional profile via MineraSkill methodologyen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.author.lattes2616135175972629[5]
unesp.departmentMatemática e Computação - FCTpt

Arquivos