Logo do repositório

Development and Automation of a Photovoltaic-Powered Soil Moisture Sensor for Water Management

dc.contributor.authorde Melo, Denilson Alves
dc.contributor.authorSilva, Patrícia Costa
dc.contributor.authorda Costa, Adriana Rodolfo
dc.contributor.authorDelmond, Josué Gomes
dc.contributor.authorFerreira, Ana Flávia Alves
dc.contributor.authorde Souza, Johnny Alves
dc.contributor.authorde Oliveira-Júnior, José Francisco
dc.contributor.authorda Silva, Jhon Lennon Bezerra
dc.contributor.authorda Rosa Ferraz Jardim, Alexandre Maniçoba [UNESP]
dc.contributor.authorGiongo, Pedro Rogerio
dc.contributor.authorFerreira, Maria Beatriz
dc.contributor.authorde Assunção Montenegro, Abelardo Antônio
dc.contributor.authorde Oliveira, Henrique Fonseca Elias
dc.contributor.authorda Silva, Thieres George Freire
dc.contributor.authorda Silva, Marcos Vinícius
dc.contributor.institutionUniversidade Estadual de Goiás
dc.contributor.institutionUniversidade de Rio Verde
dc.contributor.institutionFederal University of Alagoas (UFAL)
dc.contributor.institutionNational Institute of the Semiarid Region (INSA)
dc.contributor.institutionFederal Rural University of Pernambuco
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal Rural University of Pernambuco (UFRPE)
dc.contributor.institutionGoiano Federal Institute
dc.date.accessioned2025-04-29T20:08:23Z
dc.date.issued2023-08-01
dc.description.abstractThe objective of this study was to develop and calibrate a photovoltaic-powered soil moisture sensor (SMS) for irrigation management. Soil moisture readings obtained from the sensor were compared with gravimetric measurements. An automated SMS was used in two trials: (i) okra crop (Abelmoschus esculentus) and (ii) chili pepper (Capsicum frutescens). All sensors were calibrated and automated using an Arduino Mega board with C++. The soil moisture data were subjected to descriptive statistical analysis. The data recorded by the equipment was correlated with the gravimetric method. The determination coefficient (R2), Pearson correlation (r), and root mean square error (RMSE) were adopted as criteria for equipment validation. The results show that our SMS achieved an R2 value of 0.70 and an r value of 0.84. Notably, there was a striking similarity observed between SMS and gravimetric data, with RMSE values of 3.95 and 4.01, respectively. The global model developed exhibited highly efficient outcomes with R2 (0.98) and r (0.99) values. The applicability of the developed SMS facilitates irrigation management with accuracy and real-time monitoring using digital data. The automation of the SMS emerges as a real-time and precise alternative for performing irrigation at the right moment and in the correct amount, thus avoiding water losses.en
dc.description.affiliationDepartamento de Engenharia Agrícola Câmpus Suodoeste Unidade Universitária de Santa Helena de Goiás Universidade Estadual de Goiás, Via Protestato Joaquim Bueno 945 Santa Helena de Goiás, GO
dc.description.affiliationFaculdade de Direito Universidade de Rio Verde, Avenida Universitária, Qd.07, Lt2, Residencial Tocantins, GO
dc.description.affiliationInstitute of Atmospheric Sciences (ICAT) Federal University of Alagoas (UFAL), AL
dc.description.affiliationCenter for Information Management and Popularization of Science National Institute of the Semiarid Region (INSA), Av. Francisco Lopes de Almeida, s/n-Serrotão, PB
dc.description.affiliationDepartment of Agricultural Engineering Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, PE
dc.description.affiliationDepartment of Biodiversity Institute of Bioscience São Paulo State University—UNESP, Av. 24A, 1515, SP
dc.description.affiliationDepartment of Forest Science Federal Rural University of Pernambuco (UFRPE), PE
dc.description.affiliationCerrado Irrigation Graduate Program Goiano Federal Institute, GO
dc.description.affiliationUnespDepartment of Biodiversity Institute of Bioscience São Paulo State University—UNESP, Av. 24A, 1515, SP
dc.identifierhttp://dx.doi.org/10.3390/hydrology10080166
dc.identifier.citationHydrology, v. 10, n. 8, 2023.
dc.identifier.doi10.3390/hydrology10080166
dc.identifier.issn2306-5338
dc.identifier.scopus2-s2.0-85169101928
dc.identifier.urihttps://hdl.handle.net/11449/307088
dc.language.isoeng
dc.relation.ispartofHydrology
dc.sourceScopus
dc.subjectautomation
dc.subjectsoil moisture
dc.subjectsolar energy
dc.subjecttensiometer
dc.titleDevelopment and Automation of a Photovoltaic-Powered Soil Moisture Sensor for Water Managementen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-6131-7605[7]
unesp.author.orcid0000-0002-2611-4036[8]
unesp.author.orcid0000-0001-7094-3635[9]
unesp.author.orcid0000-0001-8698-292X[13]
unesp.author.orcid0000-0002-8355-4935[14]
unesp.author.orcid0000-0002-1318-2320[15]

Arquivos

Coleções