Publicação: Obstruction theory for coincidences of multiple maps
Carregando...
Data
2017-09-15
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Let f1,…,fk:X→N be maps from a complex X to a compact manifold N, k≥2. In previous works [1,12], a Lefschetz type theorem was established so that the non-vanishing of a Lefschetz type coincidence class L(f1,…,fk) implies the existence of a coincidence x∈X such that f1(x)=…=fk(x). In this paper, we investigate the converse of the Lefschetz coincidence theorem for multiple maps. In particular, we study the obstruction to deforming the maps f1,…,fk to be coincidence free. We construct an example of two maps f1,f2:M→T from a sympletic 4-manifold M to the 2-torus T such that f1 and f2 cannot be homotopic to coincidence free maps but for any f:M→T, the maps f1,f2,f are deformable to be coincidence free.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Topology and its Applications, v. 229, p. 213-225.