Closed-form solutions of generalized linear first-order differential equations by Picard’s method
| dc.contributor.author | de Castro, Antonio S. [UNESP] | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T20:14:58Z | |
| dc.date.issued | 2024-01-01 | |
| dc.description.abstract | For homogeneous linear first-order differential equations, it is shown that Picard’s method of successive approximations is effective to furnish a closed-form solution even if the coefficient is an arbitrary function. | en |
| dc.description.affiliation | Universidade Estadual Paulista Faculdade de Engenharia e Ciências, SP | |
| dc.description.affiliationUnesp | Universidade Estadual Paulista Faculdade de Engenharia e Ciências, SP | |
| dc.format.extent | 1-3 | |
| dc.identifier | http://dx.doi.org/10.1590/1806-9126-RBEF-2024-0113 | |
| dc.identifier.citation | Revista Brasileira de Ensino de Fisica, v. 46, p. 1-3. | |
| dc.identifier.doi | 10.1590/1806-9126-RBEF-2024-0113 | |
| dc.identifier.issn | 0102-4744 | |
| dc.identifier.scopus | 2-s2.0-85203365411 | |
| dc.identifier.uri | https://hdl.handle.net/11449/309265 | |
| dc.language.iso | eng | |
| dc.language.iso | por | |
| dc.relation.ispartof | Revista Brasileira de Ensino de Fisica | |
| dc.source | Scopus | |
| dc.subject | equação diferencial de primeira ordem | |
| dc.subject | first-order differential equation | |
| dc.subject | Método de Picard | |
| dc.subject | Picard’s method | |
| dc.subject | successive approximations | |
| dc.subject | sucessivas aproximações | |
| dc.title | Closed-form solutions of generalized linear first-order differential equations by Picard’s method | en |
| dc.title | Soluções em forma fechada de equações diferenciais lineares de primeira ordem generalizadas pelo método de Picard | pt |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0001-8802-8806[1] |
