Logotipo do repositório
 

Publicação:
Dual antibacterial drug-loaded nanoparticles synergistically improve treatment of Streptococcus mutans biofilms

dc.contributor.authorSims, Kenneth R.
dc.contributor.authorMaceren, Julian P.
dc.contributor.authorLiu, Yuan
dc.contributor.authorRocha, Guilherme R. [UNESP]
dc.contributor.authorKoo, Hyun
dc.contributor.authorBenoit, Danielle S. W.
dc.contributor.institutionUniv Rochester
dc.contributor.institutionUniv Penn
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T12:21:42Z
dc.date.available2021-06-25T12:21:42Z
dc.date.issued2020-10-01
dc.description.abstractDental caries (i.e., tooth decay), which is caused by biofilm formation on tooth surfaces, is the most prevalent oral disease worldwide. Unfortunately, many anti-biofilm drugs lack efficacy within the oral cavity due to poor solubility, retention, and penetration into biofilms. While drug delivery systems (DDS) have been developed to overcome these hurdles and improve traditional antimicrobial treatments, including farnesol, efficacy is still modest due to myriad resistance mechanisms employed by biofilms, suggesting that synergistic drug treatments may be more efficacious. Streptococcus mutans (S. mutans), a cariogenic pathogen and biofilm forming model organism, has several key virulence factors including acidogenicity and exopolysaccharide (EPS) matrix synthesis. Flavonoids, such as myricetin, can reduce both biofilm acidogenicity and EPS synthesis. Therefore, a nanoparticle carrier (NPC) DDS with flexibility to co-load farnesol in the hydrophobic core and myricetin within the cationic corona, was tested in vitro using established and developing S. mutans biofilms. Co-loaded NPC treatments effectively disrupted biofilm biomass (Le., dry weight) and reduced biofilm viability by similar to 3 log CFU/mL versus single drug-only controls in developing biofilms, suggesting dual-drug delivery exhibits synergistic anti-biofilm effects. Mechanistic studies revealed that co-loaded NPCs synergistically inhibited planktonic bacterial growth compared to controls and reduced S. mutans acidogenicity due to decreased atpD expression, a gene associated with acid tolerance. Moreover, the myricetin-loaded NPC corona enhanced NPC binding to tooth-mimetic surfaces, which can increase drug efficacy through improved retention at the biofilm-apatite interface. Altogether, these findings suggest promise for co-delivery of myricetin and farnesol DDS as an alternative anti-biofilm treatment to prevent dental caries. Published by Elsevier Ltd on behalf of Acta Materialia Inc.en
dc.description.affiliationUniv Rochester, Sch Med & Dent, Translat Biomed Sci, Rochester, NY USA
dc.description.affiliationUniv Rochester, Dept Biomed Engn, Rochester, NY USA
dc.description.affiliationUniv Rochester, Dept Chem, Rochester, NY USA
dc.description.affiliationUniv Penn, Dept Orthodont, Ctr Innovat & Precis Dent, Sch Dent Med, Philadelphia, PA USA
dc.description.affiliationSao Paulo State Univ, Dept Dent Mat & Prosthodont, Araraquara, SP, Brazil
dc.description.affiliationUniv Rochester, Mat Sci Program, Rochester, NY USA
dc.description.affiliationUniv Rochester, Dept Orthopaed, Rochester, NY USA
dc.description.affiliationUniv Rochester, Ctr Musculoskeletal Res, Rochester, NY USA
dc.description.affiliationUniv Rochester, Ctr Oral Biol, Rochester, NY USA
dc.description.affiliationUniv Rochester, Dept Chem Engn, Rochester, NY 14627 USA
dc.description.affiliationUnespSao Paulo State Univ, Dept Dent Mat & Prosthodont, Araraquara, SP, Brazil
dc.description.sponsorshipNational Institutes of Health
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipNational Institute of Dental & Craniofacial Research of the National Institutes of Health
dc.description.sponsorshipIdNational Institutes of Health: R01 DE018023
dc.description.sponsorshipIdNational Institutes of Health: F31 DE026944
dc.description.sponsorshipIdNational Science Foundation: DMR 1206219
dc.description.sponsorshipIdFAPESP: FAPESP 2019/01429-4
dc.format.extent418-431
dc.identifierhttp://dx.doi.org/10.1016/j.actbio.2020.08.032
dc.identifier.citationActa Biomaterialia. Oxford: Elsevier Sci Ltd, v. 115, p. 418-431, 2020.
dc.identifier.doi10.1016/j.actbio.2020.08.032
dc.identifier.issn1742-7061
dc.identifier.urihttp://hdl.handle.net/11449/209544
dc.identifier.wosWOS:000577511200032
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofActa Biomaterialia
dc.sourceWeb of Science
dc.subjectBiofilm
dc.subjectNanoparticle
dc.subjectCo-loading
dc.subjectMyricetin
dc.subjectFarnesol
dc.subjectDrug delivery
dc.subjectSynergy
dc.titleDual antibacterial drug-loaded nanoparticles synergistically improve treatment of Streptococcus mutans biofilmsen
dc.typeArtigopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
relation.isDepartmentOfPublication3936e2e2-946a-42ab-8b9d-9521513200fc
relation.isDepartmentOfPublication.latestForDiscovery3936e2e2-946a-42ab-8b9d-9521513200fc
relation.isOrgUnitOfPublicationca4c0298-cd82-48ee-a9c8-c97704bac2b0
relation.isOrgUnitOfPublication.latestForDiscoveryca4c0298-cd82-48ee-a9c8-c97704bac2b0
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araraquarapt
unesp.departmentMateriais Odontológicos e Prótese - FOARpt

Arquivos