Logotipo do repositório
 

Publicação:
Short-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Network

dc.contributor.authorAbreu, T.
dc.contributor.authorMoreira, J. R. [UNESP]
dc.contributor.authorMinussi, C. R. [UNESP]
dc.contributor.authorLotufo, A. D.P. [UNESP]
dc.contributor.authorLopes, M. L.M. [UNESP]
dc.contributor.institutionScience and Technology
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T01:06:43Z
dc.date.available2020-12-12T01:06:43Z
dc.date.issued2019-09-01
dc.description.abstractThe prediction of electric charges is essential in the electric power system, because it establishes when and how much of generation, transmission and distribution capacity must be arranged to meet the expected load without interruptions in supply. Therefore, the more accurate, reliable and fast the results, the better quality the forecast will be. This paper proposes an approach that performs the forecast considering several points of the electricity network (multinodal forecast), where different types of consumers are considered (industrial, commercial and residential). In this problem is used an ARTMAP Fuzzy artificial neural network , that is based in the theory of resonance adaptative (ART). The main characteristic of neural networks of the ART family is the stability and plasticity that provide results quickly and accurately. In order to test the proposed forecast system, results of 24 hours (48 points) ahead are presented for nine substations of a New Zealand Electrical Company.en
dc.description.affiliationFederal Institute of Education Science and Technology Campus Hortolândia
dc.description.affiliationUNESP - São Paulo State University
dc.description.affiliationUNESP - Universidade Estadual Paulista Júlio de Mesquita Filho
dc.description.affiliationUnespUNESP - São Paulo State University
dc.description.affiliationUnespUNESP - Universidade Estadual Paulista Júlio de Mesquita Filho
dc.identifierhttp://dx.doi.org/10.1109/ISGT-LA.2019.8895486
dc.identifier.citation2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019.
dc.identifier.doi10.1109/ISGT-LA.2019.8895486
dc.identifier.scopus2-s2.0-85075743445
dc.identifier.urihttp://hdl.handle.net/11449/198214
dc.language.isoeng
dc.relation.ispartof2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America 2019
dc.sourceScopus
dc.subjectAggregate Load
dc.subjectElectrical System Distribution
dc.subjectFuzzy ARTMAP Neural Network
dc.subjectLoad Forecasting
dc.titleShort-Term Multinodal Load Forecasting Using a Fuzzy-ARTMAP Neural Networken
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.author.lattes7166279400544764[3]
unesp.author.orcid0000-0001-6428-4506[3]

Arquivos

Coleções