Logo do repositório

Hybrid low-dropout voltage regulator designed with TFET-MOSFET nanowire technologies

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this work, hybrid low-dropout voltage regulators (LDO) designed with a tunnel field-effect transistor (TFET)-MOSFET nanowire (NW) technologies are presented. The devices were modeled using Verilog-A with lookup tables based on experimental data of NW-TFETs and NW-MOSFETs fabricated in the same silicon vertical process flow. In all LDOs, the amplifier devices were biased with the same gm/I D = 9.5 V−1 for a maximum load current/capacitance of 1 mA/1 nF. In the hybrid regulators, the power transistors are designed with NW-MOSFETs to deliver the high load current, while the other devices are implemented with NW-TFET to provide high gain and low power consumption. Due to different onset voltages, two hybrid LDOs are proposed, one with symmetrical onset voltages implemented with a voltage shift (Hybrid-ΔV LDO) and one with a level-shift stage using the real characteristics of the devices (Hybrid-LS LDO). The hybrid circuits were compared to LDOs designed using only NW-TFETs and with only NW-MOSFETs. The Hybrid-ΔV LDO presents the best loop gain (62 dB) with a low quiescent current (7 nA), while the Hybrid-LS LDO shows a good gain-bandwidth product (700 Hz). In the transient analysis, the hybrid circuits showed a settling time close to the NW-MOSFET LDO but with higher undershoot/overshoot values in the case of a load transient. As demonstrated, the use of hybrid projects with TFET-MOSFET NW technologies enable LDOs with ultra-low power consumption and high loop gain, that are presented on TFET circuits and with a frequency response equivalent of MOSFET circuits.

Descrição

Palavras-chave

analog circuit design, hybrid TFET-MOSFET, low-dropout voltage regulator (LDO), nanowire, tunnel FET (TFET)

Idioma

Inglês

Citação

Semiconductor Science and Technology, v. 38, n. 9, 2023.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso