Effect of excess soil water on the development of Bermuda grass (Cynodon spp.)
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Univ Federal Campina Grande
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Soil drainage is an important technique in the construction of a sports lawn and information about the sensitivity of the crop to excess water influences the design of the project. Assuming that excess water affects the development of the grass and that the indices SEW30 (Sum of Excess Water above 0.30 m depth) and SDI (Stress-Day Index) are sensitive to the variables of development of the crop, the objective was to identify the sensitivity of Bermuda grass to the excess of water. The experimental design was completely randomized with five treatments and four repetitions. The treatments consisted of groundwater elevations: 0 cm d (at the level of the drains - control); 180 cm d (at 0.20 m from the soil surface); 270 cm d (at 0.15 m from the soil surface); 360 cm d (at 0.10 m from the soil surface); and 450 cm d (at 0.05 m from the soil surface), carried out fortnightly, lasting three days. The variables used to test the treatment were root length, photosynthesis rate, dry mass of roots, stolons, rhizomes, culms and leaves and dry mass of grass clippings. Stress caused by excess water near the soil surface reduced root length, dry mass of culms and leaves, and photosynthesis rate; Bermuda grass was more sensitive to excess water in its initial vegetative stage, which occurs until 42 days after planting; and the photosynthesis rate in the treatment with highest stress level decreased by approximately by 2/3 when compared to the condition of no water table.
Descrição
Palavras-chave
excess water drainage, lysimeter, water table
Idioma
Inglês
Citação
Revista Brasileira De Engenharia Agricola E Ambiental. Campina Grande Pb: Univ Federal Campina Grande, v. 24, n. 5, p. 298-303, 2020.


