Publicação: Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique
dc.contributor.author | Soares, J. | |
dc.contributor.author | Oliveira, A. P. | |
dc.contributor.author | Boznar, M. Z. | |
dc.contributor.author | Mlakar, P. | |
dc.contributor.author | Escobedo, João Francisco [UNESP] | |
dc.contributor.author | Machado, A. J. | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Jozef Stefan Inst | |
dc.contributor.institution | AMES Doo | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T15:29:04Z | |
dc.date.available | 2014-05-20T15:29:04Z | |
dc.date.issued | 2004-10-01 | |
dc.description.abstract | dIn this work, a perceptron neural-network technique is applied to estimate hourly values of the diffuse solar-radiation at the surface in São Paulo City, Brazil, using as input the global solar-radiation and other meteorological parameters measured from 1998 to 2001. The neural-network verification was performed using the hourly measurements of diffuse solar-radiation obtained during the year 2002. The neural network was developed based on both feature determination and pattern selection techniques. It was found that the inclusion of the atmospheric long-wave radiation as input improves the neural-network performance. on the other hand traditional meteorological parameters, like air temperature and atmospheric pressure, are not as important as long-wave radiation which acts as a surrogate for cloud-cover information on the regional scale. An objective evaluation has shown that the diffuse solar-radiation is better reproduced by neural network synthetic series than by a correlation model. (C) 2004 Elsevier Ltd. All rights reserved. | en |
dc.description.affiliation | Univ São Paulo, Dept Atmospher Sci, Grp Micrometeorol, BR-05508900 São Paulo, Brazil | |
dc.description.affiliation | Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia | |
dc.description.affiliation | AMES Doo, SI-1000 Ljubljana, Slovenia | |
dc.description.affiliation | Univ Estadual Paulista Julio Mesquita Filho, Dept Environm Sci, Lab Solar Radiat, Botucatu, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista Julio Mesquita Filho, Dept Environm Sci, Lab Solar Radiat, Botucatu, SP, Brazil | |
dc.format.extent | 201-214 | |
dc.identifier | http://dx.doi.org/10.1016/j.apenergy.2003.11.004 | |
dc.identifier.citation | Applied Energy. Oxford: Elsevier B.V., v. 79, n. 2, p. 201-214, 2004. | |
dc.identifier.doi | 10.1016/j.apenergy.2003.11.004 | |
dc.identifier.issn | 0306-2619 | |
dc.identifier.uri | http://hdl.handle.net/11449/38744 | |
dc.identifier.wos | WOS:000223920000006 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Applied Energy | |
dc.relation.ispartofjcr | 7.900 | |
dc.relation.ispartofsjr | 3,162 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | hourly diffuse solar radiation | pt |
dc.subject | perceptron neural network | pt |
dc.subject | São Paulo City | pt |
dc.title | Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
dspace.entity.type | Publication | |
unesp.author.lattes | 5351444612246849[6] | |
unesp.author.orcid | 0000-0003-0242-5603[1] | |
unesp.author.orcid | 0000-0002-2658-1718[6] | |
unesp.author.orcid | 0000-0001-6585-454X[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Botucatu | pt |
unesp.department | Ciência Florestal - FCA | pt |
Arquivos
Licença do Pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: