Logo do repositório

Self-Supervised Feature Extraction for Video Surveillance Anomaly Detection

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The recent studies on Video Surveillance Anomaly Detection focus only on the training methodology, utilizing pre-extracted feature vectors from videos. They give little attention to methodologies for feature extraction, which could enhance the final anomaly detection quality. Thus, this work presents a self-supervised methodology named Self-Supervised Object-Centric (SSOC) for extracting features from the relationship between objects in videos. To achieve this, a pretext task is employed to predict the future position and appearance of a reference object based on a set of past frames. The Deep Learning-based model used in the pretext task is then fine-tuned on Weak Supervised datasets for the downstream task, using the Multiple Instance Learning training strategy, with the goal of detecting anomalies in the videos. In the best case scenario, the results demonstrate an increase of 3.1% in AUC on the UCF Crime dataset and an increase of 2.8% in AUC on the CamNuvem dataset.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Brazilian Symposium of Computer Graphic and Image Processing, p. 115-120.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso