Logo do repositório

Nonlinear parametric models of viscoelastic fluid flows

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Reduced-order models (ROMs) have been widely adopted in fluid mechanics, particularly in the context of Newtonian fluid flows. These models offer the ability to predict complex dynamics, such as instabilities and oscillations, at a considerably reduced computational cost. In contrast, the reduced-order modelling of non-Newtonian viscoelastic fluid flows remains relatively unexplored. This work leverages the sparse identification of nonlinear dynamics (SINDy) algorithm to develop interpretable ROMs for viscoelastic flows. In particular, we explore a benchmark oscillatory viscoelastic flow on the four-roll mill geometry using the classical Oldroyd-B fluid. This flow exemplifies many canonical challenges associated with non-Newtonian flows, including transitions, asymmetries, instabilities, and bifurcations arising from the interplay of viscous and elastic forces, all of which require expensive computations in order to resolve the fast timescales and long transients characteristic of such flows. First, we demonstrate the effectiveness of our data-driven surrogate model to predict the transient evolution and accurately reconstruct the spatial flow field for fixed flow parameters. We then develop a fully parametric, nonlinear model capable of capturing the dynamic variations as a function of the Weissenberg number. While the training data are predominantly concentrated on a limit cycle regime for moderate Wi, we show that the parametrized model can be used to extrapolate, accurately predicting the dominant dynamics in the case of high Weissenberg numbers. The proposed methodology represents an initial step in applying machine learning and reduced-order modelling techniques to viscoelastic flows.

Descrição

Palavras-chave

computational fluid dynamics, data-driven models, machine learning, reduced-order models, sparse identification of nonlinear dynamics, viscoelastic fluids

Idioma

Inglês

Citação

Royal Society Open Science, v. 11, n. 10, 2024.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências e Tecnologia
FCT
Campus: Presidente Prudente


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso