Logotipo do repositório
 

Publicação:
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Based on growing demand for assisted reproduction technology, improved predictive models are required to optimize in vitro fertilization/intracytoplasmatic sperm injection strategies, prioritizing single embryo transfer. There are still several obstacles to overcome for the purpose of improving assisted reproductive success, such as intra-and inter-observer subjectivity in embryonic selection, high occurrence of multiple pregnancies, maternal and neonatal complications. Here, we compare studies that used several variables that impact the success of assisted reproduction, such as blastocyst morphology and morphokinetic aspects of embryo development as well as characteristics of the patients submitted to assisted reproduction, in order to predict embryo quality, implantation or live birth. Thereby, we emphasize the proposal of an artificial intelligence-based platform for a more objective method to predict live birth.

Descrição

Palavras-chave

Artificial intelligence, Assisted reproductive technology, Live birth prediction

Idioma

Inglês

Como citar

Jornal Brasileiro de Reproducao Assistida, v. 24, n. 4, p. 470-479, 2020.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação