Logotipo do repositório
 

Publicação:
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service

dc.contributor.authorChéles, Dóris Spinosa [UNESP]
dc.contributor.authorDal Molin, Eloiza Adriane [UNESP]
dc.contributor.authorRocha, José Celso [UNESP]
dc.contributor.authorNogueira, Marcelo Fábio Gouveia [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:35:21Z
dc.date.available2021-06-25T10:35:21Z
dc.date.issued2020-01-01
dc.description.abstractBased on growing demand for assisted reproduction technology, improved predictive models are required to optimize in vitro fertilization/intracytoplasmatic sperm injection strategies, prioritizing single embryo transfer. There are still several obstacles to overcome for the purpose of improving assisted reproductive success, such as intra-and inter-observer subjectivity in embryonic selection, high occurrence of multiple pregnancies, maternal and neonatal complications. Here, we compare studies that used several variables that impact the success of assisted reproduction, such as blastocyst morphology and morphokinetic aspects of embryo development as well as characteristics of the patients submitted to assisted reproduction, in order to predict embryo quality, implantation or live birth. Thereby, we emphasize the proposal of an artificial intelligence-based platform for a more objective method to predict live birth.en
dc.description.affiliationLaboratório de Matemática Aplicada Department of Biological Sciences School of Languages and Sciences São Paulo State University (UNESP), Campus Assis
dc.description.affiliationLaboratório de Micromanipulação Embrionária Department of Biological Sciences School of Sciences and Languages São Paulo State University (UNESP), Campus Assis
dc.description.affiliationUnespLaboratório de Matemática Aplicada Department of Biological Sciences School of Languages and Sciences São Paulo State University (UNESP), Campus Assis
dc.description.affiliationUnespLaboratório de Micromanipulação Embrionária Department of Biological Sciences School of Sciences and Languages São Paulo State University (UNESP), Campus Assis
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipUniversidade Estadual Paulista
dc.description.sponsorshipIdFAPESP: #2012/50533-2
dc.description.sponsorshipIdFAPESP: #2017/19323-5
dc.description.sponsorshipIdFAPESP: #2018/190530
dc.description.sponsorshipIdUniversidade Estadual Paulista: #47956
dc.format.extent470-479
dc.identifierhttp://dx.doi.org/10.5935/1518-0557.20200014
dc.identifier.citationJornal Brasileiro de Reproducao Assistida, v. 24, n. 4, p. 470-479, 2020.
dc.identifier.doi10.5935/1518-0557.20200014
dc.identifier.issn1518-0557
dc.identifier.issn1517-5693
dc.identifier.scopus2-s2.0-85092234801
dc.identifier.urihttp://hdl.handle.net/11449/206625
dc.language.isoeng
dc.relation.ispartofJornal Brasileiro de Reproducao Assistida
dc.sourceScopus
dc.subjectArtificial intelligence
dc.subjectAssisted reproductive technology
dc.subjectLive birth prediction
dc.titleMining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction serviceen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentCiências Biológicas - FCLASpt

Arquivos