Publicação: Unveiling phase transitions with machine learning
dc.contributor.author | Canabarro, Askery | |
dc.contributor.author | Fanchini, Felipe Fernandes [UNESP] | |
dc.contributor.author | Malvezzi, Andre Luiz [UNESP] | |
dc.contributor.author | Pereira, Rodrigo | |
dc.contributor.author | Chaves, Rafael | |
dc.contributor.institution | Univ Fed Rio Grande do Norte | |
dc.contributor.institution | Univ Fed Alagoas | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2019-10-06T05:29:16Z | |
dc.date.available | 2019-10-06T05:29:16Z | |
dc.date.issued | 2019-07-22 | |
dc.description.abstract | The classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systems. | en |
dc.description.affiliation | Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078970 Natal, RN, Brazil | |
dc.description.affiliation | Univ Fed Alagoas, Grp Fis Mat Condensada, Nucl Ciencias Exatas NCEx, Campus Arapiraca, BR-57309005 Arapiraca, AL, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Fac Ciencias, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliation | Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59078970 Natal, RN, Brazil | |
dc.description.affiliation | Univ Fed Rio Grande do Norte, Sch Sci & Technol, BR-59078970 Natal, RN, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Fac Ciencias, BR-17033360 Bauru, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | FFF's Universal | |
dc.description.sponsorship | INCT-IQ | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | UFAL | |
dc.description.sponsorship | John Templeton Foundation | |
dc.description.sponsorship | Serrapilheira Institute | |
dc.description.sponsorshipId | CNPq: 423713/2016-7 | |
dc.description.sponsorshipId | FFF's Universal: 409309/2018-4 | |
dc.description.sponsorshipId | FFF's Universal: 307172/2017-1 | |
dc.description.sponsorshipId | FFF's Universal: 406574/2018-9 | |
dc.description.sponsorshipId | FAPESP: 2019/05445-7 | |
dc.description.sponsorshipId | John Templeton Foundation: 61084 | |
dc.description.sponsorshipId | Serrapilheira Institute: Serra-1708-15763 | |
dc.format.extent | 13 | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevB.100.045129 | |
dc.identifier.citation | Physical Review B. College Pk: Amer Physical Soc, v. 100, n. 4, 13 p., 2019. | |
dc.identifier.doi | 10.1103/PhysRevB.100.045129 | |
dc.identifier.issn | 2469-9950 | |
dc.identifier.lattes | 8884890472193474 | |
dc.identifier.orcid | 0000-0003-3297-905X | |
dc.identifier.uri | http://hdl.handle.net/11449/186799 | |
dc.identifier.wos | WOS:000476688000005 | |
dc.language.iso | eng | |
dc.publisher | Amer Physical Soc | |
dc.relation.ispartof | Physical Review B | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.title | Unveiling phase transitions with machine learning | en |
dc.type | Artigo | |
dcterms.license | http://publish.aps.org/authors/transfer-of-copyright-agreement | |
dcterms.rightsHolder | Amer Physical Soc | |
dspace.entity.type | Publication | |
unesp.author.lattes | 4459191234201599[3] | |
unesp.author.lattes | 8884890472193474[2] | |
unesp.author.orcid | 0000-0002-3195-9551[3] | |
unesp.author.orcid | 0000-0003-3297-905X[2] | |
unesp.department | Física - FC | pt |