Logotipo do repositório
 

Publicação:
Unveiling phase transitions with machine learning

dc.contributor.authorCanabarro, Askery
dc.contributor.authorFanchini, Felipe Fernandes [UNESP]
dc.contributor.authorMalvezzi, Andre Luiz [UNESP]
dc.contributor.authorPereira, Rodrigo
dc.contributor.authorChaves, Rafael
dc.contributor.institutionUniv Fed Rio Grande do Norte
dc.contributor.institutionUniv Fed Alagoas
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T05:29:16Z
dc.date.available2019-10-06T05:29:16Z
dc.date.issued2019-07-22
dc.description.abstractThe classification of phase transitions is a central and challenging task in condensed matter physics. Typically, it relies on the identification of order parameters and the analysis of singularities in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase transitions, employing both unsupervised and supervised machine learning techniques. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how unsupervised learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating phase) as well as two distinct regions within the paramagnetic phase. Employing supervised learning we show that transfer learning becomes possible: a machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring when next-nearest-neighbor interactions are introduced. All our results rely on few- and low-dimensional input data (up to twelve lattice sites), thus providing a computational friendly and general framework for the study of phase transitions in many-body systems.en
dc.description.affiliationUniv Fed Rio Grande do Norte, Int Inst Phys, BR-59078970 Natal, RN, Brazil
dc.description.affiliationUniv Fed Alagoas, Grp Fis Mat Condensada, Nucl Ciencias Exatas NCEx, Campus Arapiraca, BR-57309005 Arapiraca, AL, Brazil
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUniv Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59078970 Natal, RN, Brazil
dc.description.affiliationUniv Fed Rio Grande do Norte, Sch Sci & Technol, BR-59078970 Natal, RN, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFFF's Universal
dc.description.sponsorshipINCT-IQ
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipUFAL
dc.description.sponsorshipJohn Templeton Foundation
dc.description.sponsorshipSerrapilheira Institute
dc.description.sponsorshipIdCNPq: 423713/2016-7
dc.description.sponsorshipIdFFF's Universal: 409309/2018-4
dc.description.sponsorshipIdFFF's Universal: 307172/2017-1
dc.description.sponsorshipIdFFF's Universal: 406574/2018-9
dc.description.sponsorshipIdFAPESP: 2019/05445-7
dc.description.sponsorshipIdJohn Templeton Foundation: 61084
dc.description.sponsorshipIdSerrapilheira Institute: Serra-1708-15763
dc.format.extent13
dc.identifierhttp://dx.doi.org/10.1103/PhysRevB.100.045129
dc.identifier.citationPhysical Review B. College Pk: Amer Physical Soc, v. 100, n. 4, 13 p., 2019.
dc.identifier.doi10.1103/PhysRevB.100.045129
dc.identifier.issn2469-9950
dc.identifier.lattes8884890472193474
dc.identifier.orcid0000-0003-3297-905X
dc.identifier.urihttp://hdl.handle.net/11449/186799
dc.identifier.wosWOS:000476688000005
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.ispartofPhysical Review B
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleUnveiling phase transitions with machine learningen
dc.typeArtigo
dcterms.licensehttp://publish.aps.org/authors/transfer-of-copyright-agreement
dcterms.rightsHolderAmer Physical Soc
dspace.entity.typePublication
unesp.author.lattes4459191234201599[3]
unesp.author.lattes8884890472193474[2]
unesp.author.orcid0000-0002-3195-9551[3]
unesp.author.orcid0000-0003-3297-905X[2]
unesp.departmentFísica - FCpt

Arquivos