Ensuring reliable water level measurement for flooding: A redundancy-based approach with pressure transducer and computer vision
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Fluid level measurement is essential in many fields, including industrial and civil sectors, especially for urban flood detection, where there is a high risk of mortality and economic losses. However, although contact-based methods that employ pressure transducers can achieve a high degree of precision, they are susceptible to damage from direct contact with the fluid. This study adopts a redundancy-based approach that combines pressure transducer measurements with computer vision to provide enhanced reliability and reduce the risk of sensor failures. Our approach entails training a deep-learning model that uses pressure sensor data to mitigate this potential risk of damage and avoid the need for manually annotating sets of images. The results show that the pressure transducer has high accuracy, with a mean absolute error (MAE) of 1.21 cm, and that the computer vision model which is trained on pressure sensor data, achieves a comparable MAE of 6.67 cm. This approach also makes the system more robust and includes a dependable backup measurement method in case the primary sensor fails. Furthermore, the model trained on the sensor data led to results that were very similar to those trained directly on ground-truth data.
Descrição
Palavras-chave
Computer vision, deep learning, flood prediction, pressure transducer, water level
Idioma
Inglês
Citação
Transactions of the Institute of Measurement and Control.




