Reversibility and transitivity of semigroup actions on homogeneous spaces
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
This paper studies reversibility and transitivity of semigroups acting on homogeneous spaces. Properties of the reversor set of a subsemigroup acting on homogeneous spaces are presented. Let G be a topological group and L a subgroup of G. Assume that S is a subsemigroup of G with nonempty interior. It is presented a study of the reversibility of the S-Action on <![CDATA[ $G/L$ ]]> in terms of the actions of S and L on homogeneous spaces of G. The results relate the reversibility and the transitivity of S in <![CDATA[ $G/L$ ]]> with the minimality of the action of L on homogeneous spaces of G. In addition, sufficient conditions for S to be right reversible in G if S is reversible in <![CDATA[ $G/L$ ]]> are presented.
Descrição
Palavras-chave
20M20, 22F30, 54H15, AMS subject classification
Idioma
Inglês
Citação
Canadian Journal of Mathematics.




