Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Assessing the Performance of Dual-Frequency Multi-Constellation GBAS Architectures during Periods of Ionospheric Scintillation in Brazil

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

A Ground-Based Augmentation System (GBAS) is a flight critical system that supports for safe, efficient, and essentially all-weather aircraft precision approach and landing operations. GBAS Approach Service Type (GAST)-X a proposed architecture candidate for future dual frequency multi-constellation (DFMC) GBAS, consisting of an uplink to the airborne that includes dual frequency raw measurements. The nominal mode of operation uses divergence-free (DFree) smoothing with up to 600 seconds of carrier smoothing, while ionosphere-free (IFree) and conventional single frequency (SF) smoothing are performed in parallel to support degraded/backup modes of operation. The use of DFree smoothed measurements makes the system less susceptible to ionospheric gradient threats. One of the benefits of GAST-X is the higher operational availability in equatorial areas due to the higher number of satellites in view offered by the multi-constellation services. In this study, the performance of different DFMC GBAS architectures was assessed using data from a set of five receivers located in Brazil, using GPS and Galileo data. The results showed that the protection levels calculated using the GAST-X architecture were better than those calculated using GAST F, which is an alternative architecture that uses SF 100-second smoothing as its primary mode of operation and with the second frequency being used for ionospheric gradient monitoring, demonstrating the robustness of the service, especially when using DFree smoothed pseudoranges. However, DFMC GBAS performance can degrade during conditions where cycle slips occur, and depending on the intensity of ionospheric scintillation, one or more backup modes can be more suitable than the nominal DFree mode of GAST-X or the single-frequency mode of GAST F.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Proceedings of the 36th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2023, p. 1855-1878.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências e Tecnologia
FCT
Campus: Presidente Prudente


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso